Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Evol Biol ; 30(8): 1450-1477, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28786193

ABSTRACT

Speciation, the evolution of reproductive isolation among populations, is continuous, complex, and involves multiple, interacting barriers. Until it is complete, the effects of this process vary along the genome and can lead to a heterogeneous genomic landscape with peaks and troughs of differentiation and divergence. When gene flow occurs during speciation, barriers restricting gene flow locally in the genome lead to patterns of heterogeneity. However, genomic heterogeneity can also be produced or modified by variation in factors such as background selection and selective sweeps, recombination and mutation rate variation, and heterogeneous gene density. Extracting the effects of gene flow, divergent selection and reproductive isolation from such modifying factors presents a major challenge to speciation genomics. We argue one of the principal aims of the field is to identify the barrier loci involved in limiting gene flow. We first summarize the expected signatures of selection at barrier loci, at the genomic regions linked to them and across the entire genome. We then discuss the modifying factors that complicate the interpretation of the observed genomic landscape. Finally, we end with a road map for future speciation research: a proposal for how to account for these modifying factors and to progress towards understanding the nature of barrier loci. Despite the difficulties of interpreting empirical data, we argue that the availability of promising technical and analytical methods will shed further light on the important roles that gene flow and divergent selection have in shaping the genomic landscape of speciation.


Subject(s)
Gene Flow , Selection, Genetic , Animals , Genetic Speciation , Genome , Genomics , Reproduction
3.
J Evol Biol ; 26(1): 186-204, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23199201

ABSTRACT

Parallel phenotypic evolution in similar environments has been well studied in evolutionary biology; however, comparatively little is known about the influence of determinism and historical contingency on the nature, extent and generality of this divergence. Taking advantage of a novel system containing multiple lake-stream stickleback populations, we examined the extent of ecological, morphological and genetic divergence between three-spined stickleback present in parapatric environments. Consistent with other lake-stream studies, we found a shift towards a deeper body and shorter gill rakers in stream fish. Morphological shifts were concurrent with changes in diet, indicated by both stable isotope and stomach contents analysis. Performing a multivariate test for shared and unique components of evolutionary response to the distance gradient from the lake, we found a strong signature of parallel adaptation. Nonparallel divergence was also present, attributable mainly to differences between river locations. We additionally found evidence of genetic substructuring across five lake-stream transitions, indicating that some level of reproductive isolation occurs between populations in these habitats. Strong correlations between pairwise measures of morphological, ecological and genetic distance between lake and stream populations supports the hypothesis that divergent natural selection between habitats drives adaptive divergence and reproductive isolation. Lake-stream stickleback divergence in Lough Neagh provides evidence for the deterministic role of selection and supports the hypothesis that parallel selection in similar environments may initiate parallel speciation.


Subject(s)
Biological Evolution , Genetics, Population , Smegmamorpha/physiology , Adaptation, Physiological , Animals , Carbon Isotopes/analysis , Diet , Ireland , Lakes , Microsatellite Repeats , Multivariate Analysis , Nitrogen Isotopes/analysis , Reproductive Isolation , Rivers , Smegmamorpha/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...