Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Appl Physiol ; 122(1): 185-197, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34633508

ABSTRACT

PURPOSE: Sickle cell trait is characterized by the presence of both normal and abnormal haemoglobin in red blood cells. The rate of exertional collapse is increased in athletes and military recruits who carry the trait, particularly in stressful environmental conditions. The aim of the present study was to investigate microvascular function and its determinants in response to intense exercise at control and warm environmental temperatures in carriers (AS) and non-carriers (AA) of sickle cell trait. METHODS: Nine AS and 11 AA, all healthy physically active young men, randomly participated in four experimental sessions (rest at 21 °C and 31 °C and cycling at 21 °C and 31 °C). All participants performed three exercises bouts as follows: 18-min submaximal exercise; an incremental test to exhaustion; and three 30-s sprints spaced with 20-s resting intervals. RESULTS: Skin Blood Flow (SkBF) was similar at rest between AA and AS. SkBF for all participants was higher at 31 °C than 21 °C. It was significantly higher in the AS group compared to the AA group immediately after exercise, regardless of the environmental conditions. No significant differences in hemorheological parameters, muscle damage or cardiac injury biomarkers were observed between the two groups. Our data also suggest higher oxidative stress for the AS group, with high superoxide dismutase (P = 0.044 main group effect). CONCLUSION: A specific profile is identified in the AS population, with increased microvascular reactivity after maximal exercise in stressful environment and slight pro-/antioxidant imbalance.


Subject(s)
Exercise/physiology , Hot Temperature , Microcirculation/physiology , Sickle Cell Trait/blood , Sickle Cell Trait/rehabilitation , Exercise Test , Humans , Male , Skin/blood supply , Young Adult
2.
J Chromatogr B Biomed Sci Appl ; 761(2): 247-54, 2001 Sep 25.
Article in English | MEDLINE | ID: mdl-11587355

ABSTRACT

Through their specificity and affinity, antibodies are useful tools in research and medicine. In this study, we investigated a new type of chromatographic method using a thermosensitive polymer for the purification of antibodies against a dextran derivative (DD), as a model. The thermally reversible soluble-insoluble poly(N-isopropylacrylamide)-dextran derivative conjugate, named poly(NIPAAm)-DD, has been synthesized by conjugating amino-terminated poly(N-isopropylacrylamide) to a DD via ethyl-3-(3-dimethylaminopropyl)-carbodiimide. On one hand, this report describes the two steps of poly(NIPAAm)-DD conjugation and characterization. On the other hand, the poly(NIPAAm)-DD conjugate was used as a tool to purify polyclonal antibodies in serum samples from rabbits subcutaneously immunized with the derivatized dextran. Antibodies were purified and quantified by immunoenzymatic assays. Our results indicate that antibodies recognized both DD and poly(NIPAAm)-DD. In contrast, they did not bind to native poly(NIPAAm) or poly(NIPAAm) conjugated with another anionic dextran. We conclude that the conjugation of a polysaccharide to poly(NIPAAm) leads to an original and efficient chromatographic method to purify antibodies. Moreover, this novel method of purification is rapid, sensitive, inexpensive and could be used to purify various types of antibodies.


Subject(s)
Acrylamides/chemistry , Antibodies/isolation & purification , Dextrans/chemistry , Animals , Enzyme-Linked Immunosorbent Assay , Female , Rabbits , Sensitivity and Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...