Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Clin Med ; 11(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36079097

ABSTRACT

Gender differences exist throughout the medical field and significant progress has been made in understanding the effects of gender in many aspects of healthcare. The field of cardio-oncology is diverse and dynamic with new oncologic and cardiovascular therapies approved each year; however, there is limited knowledge regarding the effects of gender within cardio-oncology, particularly the impact of gender on cardiotoxicities. The relationship between gender and cardio-oncology is unique in that gender likely affects not only the biological underpinnings of cancer susceptibility, but also the response to both oncologic and cardiovascular therapies. Furthermore, gender has significant socioeconomic and psychosocial implications which may impact cancer and cardiovascular risk factor profiles, cancer susceptibility, and the delivery of healthcare. In this review, we summarize the effects of gender on susceptibility of cancer, response to cardiovascular and cancer therapies, delivery of healthcare, and highlight the need for further gender specific studies regarding the cardiovascular effects of current and future oncological treatments.

3.
J Clin Invest ; 128(12): 5479-5488, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30252677

ABSTRACT

Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are associated with disease-initiating stem cells that are not eliminated by conventional therapies. Transcriptomic analysis of stem and progenitor populations in MDS and AML demonstrated overexpression of STAT3 that was validated in an independent cohort. STAT3 overexpression was predictive of a shorter survival and worse clinical features in a large MDS cohort. High STAT3 expression signature in MDS CD34+ cells was similar to known preleukemic gene signatures. Functionally, STAT3 inhibition by a clinical, antisense oligonucleotide, AZD9150, led to reduced viability and increased apoptosis in leukemic cell lines. AZD9150 was rapidly incorporated by primary MDS/AML stem and progenitor cells and led to increased hematopoietic differentiation. STAT3 knockdown also impaired leukemic growth in vivo and led to decreased expression of MCL1 and other oncogenic genes in malignant cells. These studies demonstrate that STAT3 is an adverse prognostic factor in MDS/AML and provide a preclinical rationale for studies using AZD9150 in these diseases.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Neoplasm Proteins , Neoplastic Stem Cells , Oligonucleotides/pharmacology , STAT3 Transcription Factor , Animals , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Female , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Male , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...