Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-33782651

ABSTRACT

BACKGROUND: The world pandemic COVID-19 caused by SARS-CoV-2 is currently claiming thousands of lives. Flavonoids abundantly present in the fruits and vegetables, especially quercetin, are shown to have antiviral activities. MAIN TEXT: This paper reviews the capability of the plant flavonoid quercetin to fight the novel coronavirus and the possibility for drug development based on this. The mode of action explaining the known pathways through which this molecule succeeds in the antiviral activity, action of quercetin on SARS-CoV-2 main protease 3CLpro, antiviral activities of its derivatives on human viruses, effect of combination of zinc co-factor along with quercetin in the COVID-19 treatment, and the regulation of miRNA genes involved in the viral pathogenesis are discussed. Proof for this concept is provided following the virtual screening using ten key enzymes of SARS-CoV-2 and assessing their interactions. Active residues in the 3D structures have been predicted using CASTp and were docked against quercetin. Key proteins 3CLpro, spike glycoprotein/ human ACE2-BOAT1 complex, RNA-dependent RNA polymerase, main peptidase, spike glycoprotein, RNA replicase, RNA binding protein, papain-like protease, SARS papain-like protease/ deubiquitinase, and complex of main peptidase with an additional Ala at the N-terminus of each protomer, have shown the binding energies ranging between - 6.71 and - 3.37 kcal/ Mol, showing that quercetin is a potential drug candidate inhibiting multiple SARS-CoV-2 enzymes. CONCLUSION: The antiviral properties of flavonoid and the molecular mechanisms involved are reviewed. Further, proof for this concept is given by docking of key proteins from SARS-CoV-2 with quercetin.

2.
IUCrdata ; 6(Pt 1): x210024, 2021 Jan.
Article in English | MEDLINE | ID: mdl-36340474

ABSTRACT

The title compound, [Ba(C14H20O5)2][Co(NCS)4], is formed by discrete anions and cations. The molecular packing is controlled by weak C-H⋯π inter-actions.

3.
3 Biotech ; 10(10): 442, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33014685

ABSTRACT

Genome wide microsatellite maps shall support Phytophthora systematics through the development of reliable markers, enabling species discrimination and variability analyses. Whole genome sequences of 17 Phytophthora accessions belonging to 14 species were retrieved from GenBank and the genome-wide microsatellites in each species were mined. A total of 51,200 microsatellites, including dinucleotide to decanucleotide motifs, have been identified across all the species and each one was characterized for uniqueness and repeat number. The P. infestans T30-4 genome had the highest (6873) and P. multivora 3378 had the lowest number of microsatellites (1802). Dinucleotide motifs (63.6%) followed by trinucleotide motifs (30.1%) were most abundant in all the genome. From 14 species, 250 microsatellites which are unique for the respective genomes are detailed along with their primer combinations and product sizes. P. sojae had the highest number of unique microsatellite motifs. Genome wide microsatellite maps for all the 14 Phytophthora species including the chromosome, position, motif, repeat number, forward and reverse primer sequences and expected PCR product size, for every microsatellite are presented. Markers based on the unique microsatellites could be used to identify each species, whereas the ones common to all species could be used to identify the genetic variability. Furthermore, to confirm the results, pure cultures of P. capsici, P. nicotianae and P. palmivora were procured from the Phytophthora Repository, DNA was isolated and the unique markers were screened across the species. The characteristic markers developed have confirmed the genome analysis results.

4.
Gene ; 482(1-2): 43-50, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21640172

ABSTRACT

The epidermal growth factor-Cripto-1/FRL-1/Cryptic (EGF-CFC) proteins, characterized by the highly conserved EGF and CFC domains, are extracellular membrane associated growth factor-like glycoproteins. These proteins are essential components of the Nodal signaling pathway during early vertebrate embryogenesis. Homologs of the EGF-CFC family have also been implicated in tumorigenesis in humans. Yet, little is known about the mode of molecular evolution in this family. Here we investigate the origin, extent of conservation and evolutionary relationships of EGF-CFC proteins across the metazoa. The results suggest that the first appearance of the EGF-CFC gene occurred in the ancestor of the deuterostomes. Phylogenetic analysis supports the classification of the family into distinct subfamilies that appear to have evolved through lineage-specific duplication and divergence. Site-specific analyses of evolutionary rate shifts between the two major mammalian paralogous subfamilies, Cripto and Cryptic, reveal critical amino acid sites that may account for the observed functional divergence. Furthermore, estimates of functional divergence suggest that rapid change of evolutionary rates at sites located mainly in the CFC domain may contribute towards distinct functional properties of the two paralogs.


Subject(s)
Epidermal Growth Factor/chemistry , Evolution, Molecular , Multigene Family , Amino Acid Sequence , Animals , Conserved Sequence/genetics , Exons/genetics , Genetic Variation , Genome/genetics , Humans , Introns/genetics , Molecular Sequence Data , Phylogeny , Protein Structure, Tertiary , Sequence Alignment , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...