Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 57(32): 11731-11737, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37534912

ABSTRACT

The transition away from the production and consumption of high global warming potential (GWP) hydrofluorocarbons (HFCs) under the 2016 Kigali Amendment to the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) has prompted air conditioning, refrigeration, and heat pump equipment manufacturers to seek alternative refrigerants with lower direct climate impacts. Additional factors affecting alternative refrigerant choice include safety (i.e., flammability and toxicity), environmental, and thermodynamic constraints. At the same time, manufacturers are incentivized to seek refrigerants with higher energy efficiency, which saves on electricity costs and reduces indirect greenhouse gas emissions from electricity generation. The life cycle climate performance (LCCP) metric is commonly used to assess the combined direct and indirect climate impacts of refrigerant-use equipment. Here, we consider an additional impact on climate performance: the degradation of refrigerant in equipment, i.e., the direct climate impacts of high-GWP byproducts that can form as the result of adding trifluoroiodomethane (CF3I) to refrigerant blends to reduce flammability. Such a production of high-GWP gases could change the acceptability of CF3I-containing refrigerants. Further, it highlights the need to understand refrigerant degradation within equipment in calculations of the environmental acceptability of new cooling technology.


Subject(s)
Air Pollutants , Environmental Pollutants , Greenhouse Gases , Global Warming , Air Pollutants/analysis , Rwanda
2.
Nature ; 615(7951): 259-264, 2023 03.
Article in English | MEDLINE | ID: mdl-36890371

ABSTRACT

Remarkable perturbations in the stratospheric abundances of chlorine species and ozone were observed over Southern Hemisphere mid-latitudes following the 2020 Australian wildfires1,2. These changes in atmospheric chemical composition suggest that wildfire aerosols affect stratospheric chlorine and ozone depletion chemistry. Here we propose that wildfire aerosol containing a mixture of oxidized organics and sulfate3-7 increases hydrochloric acid solubility8-11 and associated heterogeneous reaction rates, activating reactive chlorine species and enhancing ozone loss rates at relatively warm stratospheric temperatures. We test our hypothesis by comparing atmospheric observations to model simulations that include the proposed mechanism. Modelled changes in 2020 hydrochloric acid, chlorine nitrate and hypochlorous acid abundances are in good agreement with observations1,2. Our results indicate that wildfire aerosol chemistry, although not accounting for the record duration of the 2020 Antarctic ozone hole, does yield an increase in its area and a 3-5% depletion of southern mid-latitude total column ozone. These findings increase concern2,12,13 that more frequent and intense wildfires could delay ozone recovery in a warming world.


Subject(s)
Aerosols , Chlorine , Ozone Depletion , Ozone , Wildfires , Aerosols/adverse effects , Aerosols/analysis , Aerosols/chemistry , Australia , Chlorine/analysis , Chlorine/chemistry , Hydrochloric Acid/chemistry , Ozone/analysis , Ozone/chemistry , Global Warming
3.
Nat Commun ; 13(1): 939, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177585

ABSTRACT

Chlorine atoms (Cl) are highly reactive and can strongly influence the abundances of climate and air quality-relevant trace gases. Despite extensive research on molecular chlorine (Cl2), a Cl precursor, in the polar atmosphere, its sources in other regions are still poorly understood. Here we report the daytime Cl2 concentrations of up to 1 ppbv observed in a coastal area of Hong Kong, revealing a large daytime source of Cl2 (2.7 pptv s-1 at noon). Field and laboratory experiments indicate that photodissociation of particulate nitrate by sunlight under acidic conditions (pH < 3.0) can activate chloride and account for the observed daytime Cl2 production. The high Cl2 concentrations significantly increased atmospheric oxidation. Given the ubiquitous existence of chloride, nitrate, and acidic aerosols, we propose that nitrate photolysis is a significant daytime chlorine source globally. This so far unaccounted for source of chlorine can have substantial impacts on atmospheric chemistry.

5.
Natl Sci Rev ; 8(7): nwaa304, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34691692

ABSTRACT

Halogen atoms affect the budget of ozone and the fate of pollutants such as hydrocarbons and mercury. Yet their sources and significances in polluted continental regions are poorly understood. Here we report the observation of unprecedented levels (averaging at 60 parts per trillion) of bromine chloride (BrCl) at a mid-latitude site in North China during winter. Widespread coal burning in rural households and a photo-assisted process were the primary source of BrCl and other bromine gases. BrCl contributed about 55% of both bromine and chlorine atoms. The halogen atoms increased the abundance of 'conventional' tropospheric oxidants (OH, HO2 and RO2) by 26%-73%, and enhanced oxidation of hydrocarbon by nearly a factor of two and the net ozone production by 55%. Our study reveals the significant role of reactive halogen in winter atmospheric chemistry and the deterioration of air quality in continental regions where uncontrolled coal combustion is prevalent.

6.
J Phys Chem A ; 125(31): 6761-6771, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34343002

ABSTRACT

The thermal unimolecular decomposition of a methoxy radical (CH3O), a key intermediate in the combustion of methane, methanol, and other hydrocarbons, was studied using high-level coupled-cluster calculations, followed by E,J-resolved master equation analyses. The experimental results available for a wide range of temperature and pressure are in striking agreement with the calculations. In line with a previous theoretical study that used a one-dimensional master equation, the tunneling correction is found to exhibit a marked pressure dependence, being the largest at low pressure. This curious effect on the tunneling enhancement also affects the calculated kinetic isotope effect, which falls initially with pressure but is predicted to rise again at high pressures. These findings serve to reconcile a set of conflicting results regarding the importance of tunneling in this prototype unimolecular reaction and also motivate further experimental investigation. This study also exemplifies how changes in the energy redistribution due to collisions manifest in the tunneling rates.

7.
J Phys Chem A ; 125(31): 6836-6844, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34324344

ABSTRACT

Measurements of photolysis quantum yields are challenging because of the difficulties in measuring the first-generation photodissociation products, interference from other products or contaminants, sufficient photon fluxes and/or low absorption cross sections of the photolyte to make detectable amounts of products, and quantification of the photon flux. In the case of acetone (and other atmospherically relevant ketones) the uncertainty in the photolysis quantum yield creates uncertainty in the calculated OH radical and acyl peroxy nitrate production in the atmosphere. We present a new method for determining photodissociation product quantum yields by measuring acyl peroxy radicals (RC(O)O2) produced in the photolysis of ketones in air using chemical ionization mass spectrometry (CIMS). We show good agreement of our CIMS method with previously published quantum yields of the acyl radical from photolysis of biacetyl and methyl ethyl ketone (MEK) at 254 nm. Additionally, we highlight the capabilities of this CIMS method through the measurement of photolysis branching ratios for MEK. We suggest future applications of CIMS (in the laboratory and field) to measure RC(O)O2 and associated photolysis processes.

9.
Proc Natl Acad Sci U S A ; 117(46): 28640-28644, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33139542

ABSTRACT

Urban outdoor air pollution in the developing world, mostly due to particulate matter with diameters smaller than 2.5 µm (PM2.5), has been highlighted in recent years. It leads to millions of premature deaths. Outdoor air pollution has also been viewed mostly as an urban problem. We use satellite-derived demarcations to parse India's population into urban and nonurban regions, which agrees with the census data. We also use the satellite-derived surface PM2.5 levels to calculate the health impacts in the urban and nonurban regions. We show that outdoor air pollution is just as severe in nonurban regions as in the urban regions of India, with implications to monitoring, regulations, health, and policy.


Subject(s)
Air Pollution/statistics & numerical data , Mortality , Particulate Matter/adverse effects , Rural Population/statistics & numerical data , Urban Population/statistics & numerical data , Air Pollution/adverse effects , Cities , Humans , India , Satellite Imagery
12.
Phys Chem Chem Phys ; 21(44): 24592-24600, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31665197

ABSTRACT

The rate coefficient for the possible reaction of OH radical with N2O was determined to be k1 < 1 × 10-17 cm3 molecule-1 s-1 between 253 and 372 K using pulsed laser photolysis to generate OH radicals and pulsed laser induced fluorescence to detect them. The rate coefficient for the reaction of NO3 radical with N2O was measured to be k2 < 5 × 10-20 cm3 molecule-1 s-1 at 298 K using a direct method that involves a large reaction chamber equipped with cavity ring down spectroscopic detection of NO3 and N2O5. Various tests were carried out ensure the accuracy of our measurements. Based on our measured upper limits, we suggest that these two reactions alter the atmospheric lifetime of N2O of ∼120 years by less than 4%.

13.
Phys Chem Chem Phys ; 21(8): 4246-4257, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30747177

ABSTRACT

The rate coefficients for the reactions of NO3 radicals with methane (CH4), ethane (C2H6), propane (C3H8), n-butane (n-C4H10), iso-butane (iso-C4H10), 2,3-dimethylbutane (C6H14), cyclopentane (C5H10) and cyclohexane (C6H12) at atmosphere pressure (1000 ± 5 hPa) and room temperature (298 ± 1.5 K) were measured using an absolute method. Careful attention was paid to the role of secondary reactions and impurities. The upper limits of rate coefficients for methane and ethane at 298 K are <4 × 10-20 and <5 × 10-19 cm3 molecule-1 s-1, respectively. The rate coefficients at 298 K for propane, n-butane, iso-butane, 2,3-dimethybutane, cyclopentane and cyclohexane are, (9.2 ± 2.9) × 10-18, (1.5 ± 0.4) × 10-17, (8.2 ± 2.2) × 10-17, (5.8 ± 2.4) × 10-16, (1.5 ± 0.6) × 10-16 and (1.3 ± 0.4) × 10-16 cm3 molecule-1 s-1, respectively. Rate coefficients for the reactions of NO3 radical with two deuterated n-butanes (butane-D10 and butane-1,1,1,4,4,4-D6) are also reported. We show that the rate coefficients for NO3 reactions correlate with the enthalpy change for the reaction, thereby suggesting that the mechanism for NO3 reactions with alkanes is through H atom abstraction. The measured rate coefficients are compared with available literature values. This study increases the number of available rate coefficients for the reactions of NO3 with alkanes and sets significantly lower upper limits for reaction of NO3 with ethane and methane. The atmospheric significance of our reported rate coefficients is briefly discussed.

15.
Geohealth ; 3(1): 2-10, 2019 Jan.
Article in English | MEDLINE | ID: mdl-32159019

ABSTRACT

The annual premature mortality in India attributed to exposure to ambient particulate matter (PM2.5) exceeds 1 million (Cohen et al., 2017, https://doi.org/10.1016/S0140-6736(17)30505-6). Studies have estimated sector-specific premature mortality from ambient PM2.5 exposure in India and shown residential energy use is the dominant contributing sector. In this study, we estimate the contribution of PM2.5 and premature mortality from six regions of India in 2012 using the global chemical-transport model. We calculate how premature mortality in India is determined by the transport of pollution from different regions. Of the estimated 1.1 million annual premature deaths from PM2.5 in India, about ~60% was from anthropogenic pollutants emitted from within the region in which premature mortality occurred, ~19% was from transport of anthropogenic pollutants between different regions within India, ~16% was due to anthropogenic pollutants emitted outside of India, and ~4% was associated with natural PM2.5 sources. The emissions from Indo Gangetic Plain contributed to ~46% of total premature mortality over India, followed by Southern India (13%). Indo Gangetic Plain also contributed (~8%) to the most premature mortalities in other regions of India through transport. More than 50% of the premature mortality in Northern, Eastern, Western, and Central India was due to transport of PM2.5 from regions outside of these individual regions. Our results indicate that reduction in anthropogenic emissions over India, as well as its neighboring regions, will be required to reduce the health impact of ambient PM2.5 in India.

16.
Proc Natl Acad Sci U S A ; 115(52): 13192-13197, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30559187

ABSTRACT

Different regions of the world have had different historical patterns of emissions of carbon dioxide, other greenhouse gases, and aerosols as well as different land-use changes. One can estimate the net cumulative contribution by each region to the global mean radiative forcing due to past greenhouse gas emissions, aerosol precursors, and carbon dioxide from land-use changes. Several patterns stand out from such calculations. Some regions have had a common historical pattern in which the short-term offsets between the radiative forcings from carbon dioxide and sulfate aerosols temporarily led to near-zero radiative forcing during periods of exponential emissions growth with few emission controls. This happened for North America and Europe in the mid-20th century and China in the 1990s and 2000s. However, these same periods lead to a commitment to future radiative forcing from the carbon dioxide and other greenhouse gases that stay in the atmosphere long after the aerosols. For every region, this commitment to future radiative forcing (2018-2100) from emissions already in the atmosphere is larger than the cumulative radiative forcing to date (1900-2017). This comparison again highlights how the full radiative forcing from greenhouse gases is unmasked once the aerosol emissions are reduced to improve air quality. The relative contributions from various regions to global climate forcing depends more on the time the contributions are compared (e.g., now or 2100) and future development scenarios than on whether cumulative radiative forcing, ocean heat content, or temperature is used to compare regional contributions.

17.
Environ Sci Technol ; 52(19): 11359-11366, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30130965

ABSTRACT

The ozone layer depletion and its recovery, as well as the climate influence of ozone-depleting substances (ODSs) and their substitutes that influence climate, are of interest to both the scientific community and the public. Here we report on the emissions of ODSs and their substitute from China, which is currently the largest consumer (and emitter) of these substances. We provide, for the first time, comprehensive information on ODSs and replacement hydrofluorocarbon (HFC) emissions in China starting from 1980 based on reported production and usage. We also assess the impacts (and costs) of controls on ODS consumption and emissions on the ozone layer (in terms of CFC-11-equivalent) and climate (in CO2-equivalent). In addition, we show that while China's future ODS emissions are likely to be defined as long as there is full compliance with the Montreal Protocol; its HFC emissions through 2050 are very uncertain. Our findings imply that HFC controls over the next decades that are more stringent than those under the Kigali Amendment to the Montreal Protocol would be beneficial in mitigating global climate change.


Subject(s)
Ozone Depletion , Ozone , China , Rwanda , Stratospheric Ozone
18.
J Phys Chem A ; 122(19): 4635-4646, 2018 May 17.
Article in English | MEDLINE | ID: mdl-29694043

ABSTRACT

Rate coefficients, k, for the gas-phase reaction of the OH radical with ( E)-CF3CH═CHCF3 (( E)-1,1,1,4,4,4-hexafluoro-2-butene, HFO-1336mzz(E)) were measured over a range of temperatures (211-374 K) and bath gas pressures (20-300 Torr; He, N2) using a pulsed laser photolysis-laser-induced fluorescence (PLP-LIF) technique. k1( T) was independent of pressure over this range of conditions with k1(296 K) = (1.31 ± 0.15) × 10-13 cm3 molecule-1 s-1 and k1( T) = (6.94 ± 0.80) × 10-13exp[-(496 ± 10)/ T] cm3 molecule-1 s-1, where the uncertainties are 2σ, and the pre-exponential term includes estimated systematic error. Rate coefficients for the OD reaction were also determined over a range of temperatures (262-374 K) at 100 Torr (He). The OD rate coefficients were ∼15% greater than the OH values and showed similar temperature dependent behavior with k2( T) = (7.52 ± 0.44) × 10-13exp[-(476 ± 20)/ T] and k2(296 K) = (1.53 ± 0.15) × 10-13 cm3 molecule-1 s-1. The rate coefficients for reaction 1 were also measured using a relative rate technique between 296 and 375 K with k1(296 K) measured to be (1.22 ± 0.1) × 10-13 cm3 molecule-1 s-1, in agreement with the PLP-LIF results. In addition, the 296 K rate coefficient for the O3 + ( E)-CF3CH═CHCF3 reaction was determined to be <5.2 × 10-22 cm3 molecule-1 s-1. A theoretical computational analysis is presented to interpret the observed positive temperature dependence for the addition reaction and the significant decrease in OH reactivity compared to the ( Z)-CF3CH═CHCF3 stereoisomer reaction. The estimated atmospheric lifetime of ( E)-CF3CH═CHCF3, due to loss by reaction with OH, is estimated to be ∼90 days, while the actual lifetime will depend on the location and season of its emission. Infrared absorption spectra of ( E)-CF3CH═CHCF3 were measured and used to estimate the 100 year time horizon global warming potentials (GWP) of 32 (atmospherically well-mixed) and 14 (lifetime-adjusted).

19.
J Geophys Res Atmos ; 123(7): 3688-3703, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-33614367

ABSTRACT

Tropospheric aerosol optical depth (AOD) over India was simulated by Goddard Earth Observing System (GEOS)-Chem, a global 3-D chemical-transport model, using SMOG (Speciated Multi-pOllutant Generator from Indian Institute of Technology Bombay) and GEOS-Chem (GC) (current inventories used in the GEOS-Chem model) inventories for 2012. The simulated AODs were ~80% (SMOG) and 60% (GC) of those measured by the satellites (Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging SpectroRadiometer). There is no strong seasonal variation in AOD over India. The peak AOD values are observed/simulated during summer. The simulated AOD using SMOG inventory has particulate black and organic carbon AOD higher by a factor ~5 and 3, respectively, compared to GC inventory. The model underpredicted coarse-mode AOD but agreed for fine-mode AOD with Aerosol Robotic Network data. It captured dust only over Western India, which is a desert, and not elsewhere, probably due to inaccurate dust transport and/or noninclusion of other dust sources. The calculated AOD, after dust correction, showed the general features in its observed spatial variation. Highest AOD values were observed over the Indo-Gangetic Plain followed by Central and Southern India with lowest values in Northern India. Transport of aerosols from Indo-Gangetic Plain and Central India into Eastern India, where emissions are low, is significant. The major contributors to total AOD over India are inorganic aerosol (41-64%), organic carbon (14-26%), and dust (7-32%). AOD over most regions of India is a factor of 5 or higher than over the United States.

SELECTION OF CITATIONS
SEARCH DETAIL
...