Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Dis ; 196: 106516, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38677657

ABSTRACT

Hyperphosphorylated TAR DNA-binding protein 43 (TDP-43) aggregates in the cytoplasm of neurons is the neuropathological hallmark of amyotrophic lateral sclerosis (ALS) and a group of neurodegenerative diseases collectively referred to as TDP-43 proteinopathies that includes frontotemporal dementia, Alzheimer's disease, and limbic onset age-related TDP-43 encephalopathy. The mechanism of TDP-43 phosphorylation is poorly understood. Previously we reported casein kinase 1 epsilon gene (CSNK1E gene encoding CK1ε protein) as being tightly correlated with phosphorylated TDP-43 (pTDP-43) pathology. Here we pursued studies to investigate in cellular models and in vitro how CK1ε and CK1δ (a closely related family sub-member) mediate TDP-43 phosphorylation in disease. We first validated the binding interaction between TDP-43 and either CK1δ and CK1ε using kinase activity assays and predictive bioinformatic database. We utilized novel inducible cellular models that generated translocated phosphorylated TDP-43 (pTDP-43) and cytoplasmic aggregation. Reducing CK1 kinase activity with siRNA or small molecule chemical inhibitors resulted in significant reduction of pTDP-43, in both soluble and insoluble protein fractions. We also established CK1δ and CK1ε are the primary kinases that phosphorylate TDP-43 compared to CK2α, CDC7, ERK1/2, p38α/MAPK14, and TTBK1, other identified kinases that have been implicated in TDP-43 phosphorylation. Throughout our studies, we were careful to examine both the soluble and insoluble TDP-43 protein fractions, the critical protein fractions related to protein aggregation diseases. These results identify CK1s as critical kinases involved in TDP-43 hyperphosphorylation and aggregation in cellular models and in vitro, and in turn are potential therapeutic targets by way of CK1δ/ε inhibitors.


Subject(s)
Amyotrophic Lateral Sclerosis , Casein Kinase 1 epsilon , Casein Kinase Idelta , DNA-Binding Proteins , Phosphorylation , DNA-Binding Proteins/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/drug therapy , Humans , Casein Kinase Idelta/metabolism , Casein Kinase 1 epsilon/metabolism , HEK293 Cells
2.
Sci Transl Med ; 11(523)2019 12 18.
Article in English | MEDLINE | ID: mdl-31852800

ABSTRACT

Motor neuron-specific microRNA-218 (miR-218) has recently received attention because of its roles in mouse development. However, miR-218 relevance to human motor neuron disease was not yet explored. Here, we demonstrate by neuropathology that miR-218 is abundant in healthy human motor neurons. However, in amyotrophic lateral sclerosis (ALS) motor neurons, miR-218 is down-regulated and its mRNA targets are reciprocally up-regulated (derepressed). We further identify the potassium channel Kv10.1 as a new miR-218 direct target that controls neuronal activity. In addition, we screened thousands of ALS genomes and identified six rare variants in the human miR-218-2 sequence. miR-218 gene variants fail to regulate neuron activity, suggesting the importance of this small endogenous RNA for neuronal robustness. The underlying mechanisms involve inhibition of miR-218 biogenesis and reduced processing by DICER. Therefore, miR-218 activity in motor neurons may be susceptible to failure in human ALS, suggesting that miR-218 may be a potential therapeutic target in motor neuron disease.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , MicroRNAs/metabolism , Neuropathology/methods , Amyotrophic Lateral Sclerosis/genetics , Animals , Ether-A-Go-Go Potassium Channels/genetics , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Mice , MicroRNAs/genetics , Motor Neurons/metabolism , Neurons/metabolism
3.
Mol Neurodegener ; 12(1): 76, 2017 10 24.
Article in English | MEDLINE | ID: mdl-29065921

ABSTRACT

BACKGROUND: The objective of this study was to investigate cellular bioenergetics in primary skin fibroblasts derived from patients with amyotrophic lateral sclerosis (ALS) and to determine if they can be used as classifiers for patient stratification. METHODS: We assembled a collection of unprecedented size of fibroblasts from patients with sporadic ALS (sALS, n = 171), primary lateral sclerosis (PLS, n = 34), ALS/PLS with C9orf72 mutations (n = 13), and healthy controls (n = 91). In search for novel ALS classifiers, we performed extensive studies of fibroblast bioenergetics, including mitochondrial membrane potential, respiration, glycolysis, and ATP content. Next, we developed a machine learning approach to determine whether fibroblast bioenergetic features could be used to stratify patients. RESULTS: Compared to controls, sALS and PLS fibroblasts had higher average mitochondrial membrane potential, respiration, and glycolysis, suggesting that they were in a hypermetabolic state. Only membrane potential was elevated in C9Orf72 lines. ATP steady state levels did not correlate with respiration and glycolysis in sALS and PLS lines. Based on bioenergetic profiles, a support vector machine (SVM) was trained to classify sALS and PLS with 99% specificity and 70% sensitivity. CONCLUSIONS: sALS, PLS, and C9Orf72 fibroblasts share hypermetabolic features, while presenting differences of bioenergetics. The absence of correlation between energy metabolism activation and ATP levels in sALS and PLS fibroblasts suggests that in these cells hypermetabolism is a mechanism to adapt to energy dissipation. Results from SVM support the use of metabolic characteristics of ALS fibroblasts and multivariate analysis to develop classifiers for patient stratification.


Subject(s)
Amyotrophic Lateral Sclerosis/classification , Amyotrophic Lateral Sclerosis/metabolism , Fibroblasts/metabolism , Adult , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/pathology , Energy Metabolism , Female , Humans , Machine Learning , Male , Middle Aged , Skin
4.
Mol Neurodegener ; 12(1): 37, 2017 05 08.
Article in English | MEDLINE | ID: mdl-28482850

ABSTRACT

BACKGROUND: Mitochondrial dysfunction has been linked to the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Functional studies of mitochondrial bioenergetics have focused mostly on superoxide dismutase 1 (SOD1) mutants, and showed that mutant human SOD1 impairs mitochondrial oxidative phosphorylation, calcium homeostasis, and dynamics. However, recent reports have indicated that alterations in transactivation response element DNA-binding protein 43 (TDP-43) can also lead to defects of mitochondrial morphology and dynamics. Furthermore, it was proposed that TDP-43 mutations cause oxidative phosphorylation impairment associated with respiratory chain defects and that these effects were caused by mitochondrial localization of the mutant protein. Here, we investigated the presence of bioenergetic defects in the brain of transgenic mice expressing human mutant TDP-43 (TDP-43A315T mice), patient derived fibroblasts, and human cells expressing mutant forms of TDP-43. METHODS: In the brain of TDP-43A315T mice, TDP-43 mutant fibroblasts, and cells expressing mutant TDP-43, we tested several bioenergetics parameters, including mitochondrial respiration, ATP synthesis, and calcium handling. Differences between mutant and control samples were evaluated by student t-test or by ANOVA, followed by Bonferroni correction, when more than two groups were compared. Mitochondrial localization of TDP-43 was investigated by immunocytochemistry in fibroblasts and by subcellular fractionation and western blot of mitochondrial fractions in mouse brain. RESULTS: We did not observe defects in any of the mitochondrial bioenergetic functions that were tested in TDP-43 mutants. We detected a small amount of TDP-43A315T peripherally associated with brain mitochondria. However, there was no correlation between TDP-43 associated with mitochondria and respiratory chain dysfunction. In addition, we observed increased calcium uptake in mitochondria from TDP-43A315T mouse brain and cells expressing A315T mutant TDP-43. CONCLUSIONS: While alterations of mitochondrial morphology and dynamics in TDP-43 mutant neurons are well established, the present study did not demonstrate oxidative phosphorylation defects in TDP-43 mutants, in vitro and in vivo. On the other hand, the increase in mitochondrial calcium uptake in A315T TDP-43 mutants was an intriguing finding, which needs to be investigated further to understand its mechanisms and potential pathogenic implications.


Subject(s)
DNA-Binding Proteins/genetics , Energy Metabolism/genetics , Mitochondria/physiology , Animals , Brain/metabolism , Cell Line , Humans , Mice , Mice, Transgenic , Mutation , Oxidative Phosphorylation
5.
Proc Natl Acad Sci U S A ; 113(9): 2514-9, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26888285

ABSTRACT

A significant unmet need in treating neurodegenerative disease is effective methods for delivery of biologic drugs, such as peptides, proteins, or nucleic acids into the central nervous system (CNS). To date, there are no operative technologies for the delivery of macromolecular drugs to the CNS via peripheral administration routes. Using an in vivo phage-display screen, we identify a peptide, targeted axonal import (TAxI), that enriched recombinant bacteriophage accumulation and delivered protein cargo into spinal cord motor neurons after intramuscular injection. In animals with transected peripheral nerve roots, TAxI delivery into motor neurons after peripheral administration was inhibited, suggesting a retrograde axonal transport mechanism for delivery into the CNS. Notably, TAxI-Cre recombinase fusion proteins induced selective recombination and tdTomato-reporter expression in motor neurons after intramuscular injections. Furthermore, TAxI peptide was shown to label motor neurons in the human tissue. The demonstration of a nonviral-mediated delivery of functional proteins into the spinal cord establishes the clinical potential of this technology for minimally invasive administration of CNS-targeted therapeutics.


Subject(s)
Axons , Motor Neurons/metabolism , Peptides/metabolism , Spinal Cord/metabolism , Humans , Integrases/metabolism , Motor Neurons/cytology , Protein Transport , Spinal Cord/cytology
6.
EMBO J ; 34(21): 2633-51, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26330466

ABSTRACT

Interest in RNA dysfunction in amyotrophic lateral sclerosis (ALS) recently aroused upon discovering causative mutations in RNA-binding protein genes. Here, we show that extensive down-regulation of miRNA levels is a common molecular denominator for multiple forms of human ALS. We further demonstrate that pathogenic ALS-causing mutations are sufficient to inhibit miRNA biogenesis at the Dicing step. Abnormalities of the stress response are involved in the pathogenesis of neurodegeneration, including ALS. Accordingly, we describe a novel mechanism for modulating microRNA biogenesis under stress, involving stress granule formation and re-organization of DICER and AGO2 protein interactions with their partners. In line with this observation, enhancing DICER activity by a small molecule, enoxacin, is beneficial for neuromuscular function in two independent ALS mouse models. Characterizing miRNA biogenesis downstream of the stress response ties seemingly disparate pathways in neurodegeneration and further suggests that DICER and miRNAs affect neuronal integrity and are possible therapeutic targets.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , MicroRNAs/biosynthesis , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/pathology , Animals , Base Sequence , Cytoplasmic Granules/metabolism , DEAD-box RNA Helicases/metabolism , Down-Regulation , Drug Evaluation, Preclinical , Enoxacin/pharmacology , Female , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/genetics , Motor Neurons/metabolism , RNA Interference , RNA Processing, Post-Transcriptional , Ribonuclease III/metabolism , Stress, Physiological , Superoxide Dismutase/genetics , Superoxide Dismutase-1
7.
Neurology ; 73(10): 805-11, 2009 Sep 08.
Article in English | MEDLINE | ID: mdl-19738176

ABSTRACT

Heterogeneity of motor phenotypes is a clinically well-recognized fundamental aspect of amyotrophic lateral sclerosis (ALS) and is determined by variability of 3 independent primary attributes: body region of onset; relative mix of upper motor neuron (UMN) and lower motor neuron (LMN) deficits; and rate of progression. Motor phenotypes are determined by the anatomy of the underlying neuropathology and the common defining elements underlying their heterogeneity are that motor neuron degeneration is fundamentally a focal process and that it spreads contiguously through the 3-dimensional anatomy of the UMN and LMN levels, thus causing seemingly complex and varied clinical manifestations. This suggests motor neuron degeneration in ALS is in actuality a very orderly and actively propagating process and that fundamental molecular mechanisms may be uniform and their chief properties deduced. This also suggests opportunities for translational research to seek pathobiology directly in the less affected regions of the nervous system.


Subject(s)
Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/physiopathology , Motor Neurons/physiology , Nerve Degeneration/diagnosis , Nerve Degeneration/physiopathology , Amyotrophic Lateral Sclerosis/genetics , Animals , Humans , Nerve Degeneration/genetics , Neural Conduction/physiology , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...