Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 14(3): 1484-91, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24548146

ABSTRACT

Nanoparticle LiFePO4, the basis for an entire class of high power Li-ion batteries, has recently been shown to exist in binary lithiated/delithiated states at intermediate states of charge. The Mn-bearing version, LiMn(y)Fe(1-y)PO4, exhibits even higher rate capability as a lithium battery cathode than LiFePO4 of comparable particle size. To gain insight into the cause(s) of this desirable performance, the electrochemically driven phase transformation during battery charge and discharge of nanoscale LiMn0.4Fe0.6PO4 of three different average particle sizes, 52, 106, and 152 nm, is investigated by operando synchrotron radiation powder X-ray diffraction. In stark contrast to the binary lithiation states of pure LiFePO4 revealed in recent investigations, the formations of metastable solid solutions covering a remarkable wide compositional range, including while in two-phase coexistence, are observed. Detailed analysis correlates this behavior with small elastic misfits between phases compared to either pure LiFePO4 or LiMnPO4. On the basis of time- and state-of-charge dependence of the olivine structure parameters, we propose a coherent transformation mechanism. These findings illustrate a second, completely different phase transformation mode for pure well-ordered nanoscale olivines compared to the well-studied case of LiFePO4.

2.
Dalton Trans ; 43(8): 3095-103, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24217049

ABSTRACT

The decomposition pathways for the composite LiAlH4-LiNH2 in different ratios of (1 : 1), (1 : 1.5), (1 : 2) and (1 : 2.5) have been systematically studied using in situ synchrotron radiation powder X-ray diffraction (SR-PXD) as well as simultaneous thermogravimetric analysis and differential scanning calorimetry coupled with mass spectroscopy. The study reveals that LiAlH4 decomposes in two steps to LiH, Al and H2 and, subsequently, the produced LiH reacts with LiNH2 forming Li2NH and H2. A new intermediate, Li(4-x)Al(x)(NH)(2-2x)N(2x), is observed during the decomposition of LiAlH4-LiNH2 (1 : 1.5), (1 : 2) and (1 : 2.5), formed from Li2NH and Al prior to the formation of Li3AlN2. Li(4-x)Al(x)(NH)(2-2x)N(2x) is characterized by Rietveld refinement of SR-PXD data and solid-state (27)Al MAS NMR spectroscopy (chemical shift, δ(Al) = 125 ppm) and both techniques reveal a maximum value for x of ~0.10, i.e., Li(3.90)Al(0.10)(NH)(1.80)N(0.20). The solid solution Li(4-x)Al(x)(NH)(2-2x)N(2x) crystallizes in a cubic unit cell, a = 4.9854(7) Å with space group Fm3m, similar to the crystal structure for Li2NH and is a rare type with both cation and anion disorder. For LiAlH4-LiNH2 (1 : 1) 8.7 wt% of H2 is released during heating from RT to 500 °C, while for LiAlH4-LiNH2 composites with molar ratios of LiNH2 higher than 0.5 the release of both H2 and NH3 is observed.

3.
Inorg Chem ; 52(19): 10877-85, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-24050805

ABSTRACT

Two novel alkali earth borohydrides, Sr(BH4)2 and Sr(BH4)Cl, have been synthesized and investigated by in-situ synchrotron radiation powder X-ray diffraction (SR-PXD) and Raman spectroscopy. Strontium borohydride, Sr(BH4)2, was synthesized via a metathesis reaction between LiBH4 and SrCl2 by two complementary methods, i.e., solvent-mediated and mechanochemical synthesis, while Sr(BH4)Cl was obtained from mechanochemical synthesis, i.e., ball milling. Sr(BH4)2 crystallizes in the orthorhombic crystal system, a = 6.97833(9) Å, b = 8.39651(11) Å, and c = 7.55931(10) Å (V = 442.927(10) Å(3)) at RT with space group symmetry Pbcn. The compound crystallizes in α-PbO2 structure type and is built from half-occupied brucite-like layers of slightly distorted [Sr(BH4)6] octahedra stacked in the a-axis direction. Strontium borohydride chloride, Sr(BH4)Cl, is a stoichiometric, ordered compound, which also crystallizes in the orthorhombic crystal system, a = 10.8873(8) Å, b = 4.6035(3) Å, and c = 7.4398(6) Å (V = 372.91(3) Å(3)) at RT, with space group symmetry Pnma and structure type Sr(OH)2. Sr(BH4)Cl dissociates into Sr(BH4)2 and SrCl2 at ~170 °C, while Sr(BH4)2 is found to decompose in multiple steps between 270 and 465 °C with formation of several decomposition products, e.g., SrB6. Furthermore, partly characterized new compounds are also reported here, e.g., a solvate of Sr(BH4)2 and two Li-Sr-BH4 compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...