Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Main subject
Publication year range
1.
Chem Mater ; 36(6): 2756-2766, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38558915

ABSTRACT

Water is one of the most reactive and abundant molecules on Earth, and it is thus crucial to understand its reactivity with various material families. One of the big unknown questions is how water in liquid and vapor forms impact the fast-emerging class of metal-organic frameworks (MOFs). Here, we discover that high-pressure water vapor drastically modifies the structure and hence the dynamic, thermodynamic, and mechanical properties of MOF glasses. In detail, we find that an archetypical MOF (ZIF-62) is extremely sensitive to heat treatments performed at 460 °C and water vapor pressures up to ∼110 bar. Both the melting and glass transition temperatures decrease remarkably (by >100 °C), and simultaneously, hardness and Young's modulus increase by up to 100% under very mild treatment conditions (<20 bar of hydrothermal pressure). Structural analyses suggest water to partially coordinate to Zn in the form of a hydroxide ion by replacing a bridging imidazolate-based linker. The work provides insight into the role of hot-compressed water in influencing the structure and properties of MOF glasses and opens a new route for systematically changing the thermodynamics and kinetics of MOF liquids and thus altering the thermal and mechanical properties of the resulting MOF glasses.

2.
Chem Mater ; 36(5): 2314-2324, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38495897

ABSTRACT

Sodium-ion batteries (NIBs) can use elements that are abundantly present in Earth's crust and are technologically feasible for replacing lithium-ion batteries (LIBs). Hence, NIBs are essential components for sustainable energy storage applications. All-solid-state sodium batteries are among the most capable substitutes to LIBs because of their potential to have low price, great energy density, and consistent safety. Nevertheless, more advancements are needed to improve the electrochemical performance of the Na3V2(PO4)3 (NVP) cathode for NIBs, especially with regard to rate performance and operational lifespan. Herein, a core-shell NVP/C structure is accomplished by adopting a solid-state method. The initial reversible capacity of the NVP/C cathode is 106.6 mAh/g (current rate of C/10), which approaches the theoretical value (117.6 mAh/g). It also exhibits outstanding electrochemical characteristics with a reversible capacity of 85.3 mAh/g at 10C and a cyclic retention of roughly 94.2% after 1100 cycles. Using synchrotron-based operando X-ray diffraction, we present a complete examination of phase transitions during sodium extraction and intercalation in NVP/C. To improve safety and given its excellent ionic conductivity and broad electrochemical window, a Na superionic conductor (NASICON) solid electrolyte (Na3.16Zr1.84Y0.16Si2PO12) has been integrated to obtain an all-solid-state NVP/C||Na battery, which provides an exceptional reversible capacity (95 mAh/g at C/10) and long-term cycling stability (retention of 78.3% after 1100 cycles).

3.
J Synchrotron Radiat ; 30(Pt 3): 561-570, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36952234

ABSTRACT

Operando powder X-ray diffraction (PXRD) is a widely employed method for the investigation of structural evolution and phase transitions in electrodes for rechargeable batteries. Due to the advantages of high brilliance and high X-ray energies, the experiments are often carried out at synchrotron facilities. It is known that the X-ray exposure can cause beam damage in the battery cell, resulting in hindrance of the electrochemical reaction. This study investigates the extent of X-ray beam damage during operando PXRD synchrotron experiments on battery materials with varying X-ray energies, amount of X-ray exposure and battery cell chemistries. Battery cells were exposed to 15, 25 or 35 keV X-rays (with varying dose) during charge or discharge in a battery test cell specially designed for operando experiments. The observed beam damage was probed by µPXRD mapping of the electrodes recovered from the operando battery cell after charge/discharge. The investigation reveals that the beam damage depends strongly on both the X-ray energy and the amount of exposure, and that it also depends strongly on the cell chemistry, i.e. the chemical composition of the electrode.

4.
Acta Crystallogr A Found Adv ; 78(Pt 5): 386-394, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36047395

ABSTRACT

A prototype application for machine-readable literature is investigated. The program is called pyDataRecognition and serves as an example of a data-driven literature search, where the literature search query is an experimental data set provided by the user. The user uploads a powder pattern together with the radiation wavelength. The program compares the user data to a database of existing powder patterns associated with published papers and produces a rank ordered according to their similarity score. The program returns the digital object identifier and full reference of top-ranked papers together with a stack plot of the user data alongside the top-five database entries. The paper describes the approach and explores successes and challenges.


Subject(s)
Publications , Databases, Factual , Powder Diffraction , Powders
5.
Acta Crystallogr A Found Adv ; 78(Pt 3): 242-248, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35502715

ABSTRACT

A cloud-hosted web-based software application, nmfMapping, for carrying out a non-negative matrix factorization of a set of powder diffraction or atomic pair distribution function datasets is described. This application allows structure scientists to find trends rapidly in sets of related data such as from in situ and operando diffraction experiments. The application is easy to use and does not require any programming expertise. It is available at https://pdfitc.org/.

6.
Adv Mater ; 34(10): e2110048, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34969158

ABSTRACT

Metal-organic frameworks (MOFs) hold great promise as high-energy anode materials for next-generation lithium-ion batteries (LIBs) due to their tunable chemistry, pore structure and abundant reaction sites. However, the pore structure of crystalline MOFs tends to collapse during lithium-ion insertion and extraction, and hence, their electrochemical performances are rather limited. As a critical breakthrough, a MOF glass anode for LIBs has been developed in the present work. In detail, it is fabricated by melt-quenching Cobalt-ZIF-62 (Co(Im)1.75 (bIm)0.25 ) to glass, and then by combining glass with carbon black and binder. The derived anode exhibits high lithium storage capacity (306 mAh g-1 after 1000 cycles at of 2 A g-1 ), outstanding cycling stability, and superior rate performance compared with the crystalline Cobalt-ZIF-62 and the amorphous one prepared by high-energy ball-milling. Importantly, it is found that the Li-ion storage capacity of the MOF glass anode continuously rises with charge-discharge cycling and even tripled after 1000 cycles. Combined spectroscopic and structural analyses, along with density functional theory calculations, reveal the origin of the cycling-induced enhancement of the performances of the MOF glass anode, that is, the increased distortion and local breakage of the CoN coordination bonds making the Li-ion intercalation sites more accessible.

7.
Inorg Chem ; 60(21): 16700-16712, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34669389

ABSTRACT

The synthesis and thermal degradation of MAl4(OH)12SO4·3H2O layered double hydroxides with M = Co2+, Ni2+, Cu2+, and Zn2+ ("MAl4-LDH") were investigated by inductively coupled plasma-optical emission spectroscopy, thermogravimetric analysis, powder X-ray diffraction, Rietveld refinement, scanning electron microscopy, scanning tunnel electron microscopy, energy-dispersive X-ray spectroscopy, and solid-state 1H and 27Al NMR spectroscopy. Following extensive synthesis optimization, phase pure CoAl4- and NiAl4-LDH were obtained, whereas 10-12% unreacted bayerite (Al(OH)3) remained for the CuAl4-LDH. The optimum synthesis conditions are hydrothermal treatment at 120 °C for 14 days (NiAl4-LDH only 9 days) with MSO4(aq) concentrations of 1.4-2.8, 0.7-0.8, and 0.08 M for the CoAl4-, NiAl4-, and CuAl4-LDH, respectively. A pH ≈ 2 for the metal sulfate solutions is required to prevent the formation of byproducts, which were Ni(OH)2 and Cu3(SO4)(OH)4 for NiAl4- and CuAl4-LDH, respectively. The thermal degradation of the three MAl4-LDH and ZnAl4-LDH in a nitrogen atmosphere proceeds in three steps: (i) dehydration and dehydroxylation between 200 and 600 °C, (ii) loss of sulfate between 600 and 900 °C, and (iii) formation of the end products at 900-1200 °C. For CoAl4-LDH (ZnAl4-LDH), these are α-Al2O3 and CoAl2O4 (ZnAl2O4) spinel. For NiAl4-LDH, a spinel-like NiAl4O7 phase forms, whereas CuAl4-LDH degrades by a redox reaction yielding a diamagnetic CuAlO2 (delafossite structure) and α-Al2O3.

8.
Nanoscale ; 12(24): 12824-12830, 2020 Jun 28.
Article in English | MEDLINE | ID: mdl-32515762

ABSTRACT

Iron(iii) hydroxide phosphate hydrate Fe1.13(PO4)(OH)0.39(H2O)0.61 is investigated for the first time as a Na-ion battery cathode, which reveals that the material exhibits similar storage capacities for Na- and Li-ions at relatively low current rates (i.e. C/10). Interestingly, operando X-ray diffraction shows that insertion of Na-ions induces a solid solution transition in the crystalline Fe1.13(PO4)(OH)0.39(H2O)0.61 end-member simultaneously with a major amorphization. This result adds to the series of observations of phosphate-based materials undergoing order-disorder transitions during Na-ion storage. Fe1.13(PO4)(OH)0.39(H2O)0.61 is thus ideal for enhancing our knowledge on such phenomena. To this end, using total X-ray scattering with pair distribution function analysis, we show that the amorphous phase is Na-rich NaxFe1.13(PO4)(OH)0.39(H2O)0.61 with the local [FeO6]-[PO4] motif retained but with coherence lengths of only ca. 0.6 nm. Our investigation also reveals that the crystallinity of Fe1.13(PO4)(OH)0.39(H2O)0.61 is regained upon Na-extraction (battery recharge), i.e. the order-disorder transition is reversible.

9.
Nanoscale ; 11(25): 12347-12357, 2019 Jul 07.
Article in English | MEDLINE | ID: mdl-31215584

ABSTRACT

Nano-sized particles of rutile TiO2 is a promising material for cheap high-capacity anodes for Li-ion batteries. It is well-known that rutile undergoes an irreversible order-disorder transition upon deep discharge. However, in the disordered state, the LixTiO2 material retains a high reversible ion-storage capacity of >200 mA h g-1. Despite the promising properties of the material, the structural transition and evolution during the repeated battery operation has so far been studied only by diffraction-based methods, which only provide insight into the part that retains some long-range order. Here, we utilize a combination of ex situ and operando total scattering with pair distribution function analysis and transmission electron microscopy to investigate the atomic-scale structures of the disordered LixTiO2 forming upon the discharge of nano-rutile TiO2 as well as to elucidate the phase behavior in the material during the repeated charge-discharge process. Our investigation reveals that nano-rutile upon Li-intercalation transforms into a composite of ∼5 nm domains of a layered LixTiO2α-NaFeO2-type structure with ∼1 nm LixTiO2 grain boundaries with a columbite-like structural motif. During repeated charge-discharge cycling, the structure of this composite is retained and stores Li through a complete solid-solution transition with a remarkably small volume change of only 1 vol%.

10.
Phys Chem Chem Phys ; 19(44): 30157-30165, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29104996

ABSTRACT

Fluoride substitution in LiBH4 is studied by investigation of LiBH4-LiBF4 mixtures (9 : 1 and 3 : 1). Decomposition was followed by in situ synchrotron radiation X-ray diffraction (in situ SR-PXD), thermogravimetric analysis and differential scanning calorimetry with gas analysis (TGA/DSC-MS) and in situ infrared spectroscopy (in situ FTIR). Upon heating, fluoride substituted LiBH4 forms (LiBH4-xFx) and decomposition occurs, releasing diborane and solid decomposition products. The decomposition temperature is reduced more than fourfold relative to the individual constituents, with decomposition commencing at T = 80 °C. The degree of fluoride substitution is quantified by sequential Rietveld refinement and shows a selective manner of substitution. In situ FTIR experiments reveal formation of bands originating from LiBH4-xFx. Formation of LiF and observation of diborane release implies that the decomposing materials have a composition that facilitates formation of diborane and LiF, i.e. LiBH4-xFx (LiBH3F). An alternative approach for fluoride substitution was performed, by addition of Et3N·3HF to LiBH4, yielding extremely unstable products. Spontaneous decomposition indicates fluoride substitution to have occurred. From our point of view, this is the most significant destabilization effect seen for borohydride materials so far.

11.
Dalton Trans ; 46(39): 13421-13431, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-28948259

ABSTRACT

Formation, stability and properties of new metal borohydrides within RE(BH4)3-NaBH4, RE = Ce, Pr, Er or Gd is investigated. Three new bimetallic sodium rare-earth borohydrides, NaCe(BH4)4, NaPr(BH4)4 and NaEr(BH4)4 are formed based on an addition reaction between NaBH4 and halide free rare-earth metal borohydrides RE(BH4)3, RE = Ce, Pr, Er. All the new compounds crystallize in the orthorhombic crystal system. NaCe(BH4)4 has unit cell parameters of a = 6.8028(5), b = 17.5181(13), c = 7.2841(5) Å and space group Pbcn. NaPr(BH4)4 is isostructural to NaCe(BH4)4 with unit cell parameters of a = 6.7617(2), b = 17.4678(7), c = 7.2522(3) Å. NaEr(BH4)4 crystallizes in space group Cmcm with unit cell parameters of a = 8.5379(2), b = 12.1570(4), c = 9.1652(3) Å. The structural relationships, also to the known RE(BH4)3, are discussed in detail and related to the stability and synthesis conditions. Heat treatment of NaBH4-Gd(BH4)3 mixture forms an unstable amorphous phase, which decomposes after one day at RT. NaCe(BH4)4 and NaPr(BH4)4 show reversible hydrogen storage capacity of 1.65 and 1.04 wt% in the fourth H2 release, whereas that of NaEr(BH4)4 continuously decreases. This is mainly assigned to formation of metal hydrides and possibly slower formation of sodium borohydride. The dehydrogenated state clearly contains rare-earth metal borides, which stabilize boron in the dehydrogenated state.

12.
Chem Soc Rev ; 46(5): 1565-1634, 2017 Mar 06.
Article in English | MEDLINE | ID: mdl-28218318

ABSTRACT

A wide variety of metal borohydrides, MBH4, have been discovered and characterized during the past decade, revealing an extremely rich chemistry including fascinating structural flexibility and a wide range of compositions and physical properties. Metal borohydrides receive increasing interest within the energy storage field due to their extremely high hydrogen density and possible uses in batteries as solid state ion conductors. Recently, new types of physical properties have been explored in lanthanide-bearing borohydrides related to solid state phosphors and magnetic refrigeration. Two major classes of metal borohydride derivatives have also been discovered: anion-substituted compounds where the complex borohydride anion, BH4-, is replaced by another anion, i.e. a halide or amide ion; and metal borohydrides modified with neutral molecules, such as NH3, NH3BH3, N2H4, etc. Here, we review new synthetic strategies along with structural, physical and chemical properties for metal borohydrides, revealing a number of new trends correlating composition, structure, bonding and thermal properties. These new trends provide general knowledge and may contribute to the design and discovery of new metal borohydrides with tailored properties towards the rational design of novel functional materials. This review also demonstrates that there is still room for discovering new combinations of light elements including boron and hydrogen, leading to complex hydrides with extreme flexibility in composition, structure and properties.

13.
Nano Lett ; 17(3): 1696-1702, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28221809

ABSTRACT

Virtually all intercalation compounds exhibit significant changes in unit cell volume as the working ion concentration varies. NaxFePO4 (0 < x < 1, NFP) olivine, of interest as a cathode for sodium-ion batteries, is a model for topotactic, high-strain systems as it exhibits one of the largest discontinuous volume changes (∼17% by volume) during its first-order transition between two otherwise isostructural phases. Using synchrotron radiation powder X-ray diffraction (PXD) and pair distribution function (PDF) analysis, we discover a new strain-accommodation mechanism wherein a third, amorphous phase forms to buffer the large lattice mismatch between primary phases. The amorphous phase has short-range order over ∼1nm domains that is characterized by a and b parameters matching one crystalline end-member phase and a c parameter matching the other, but is not detectable by powder diffraction alone. We suggest that this strain-accommodation mechanism may generally apply to systems with large transformation strains.

14.
ACS Omega ; 2(5): 1956-1967, 2017 May 31.
Article in English | MEDLINE | ID: mdl-31457554

ABSTRACT

In the past, sodium alanate, NaAlH4, has been widely investigated for its capability to store hydrogen, and its potential for improving storage properties through nanoconfinement in carbon scaffolds has been extensively studied. NaAlH4 has recently been considered for Li-ion storage as a conversion-type anode in Li-ion batteries. Here, NaAlH4 nanoconfined in carbon scaffolds as an anode material for Li-ion batteries is reported for the first time. Nanoconfined NaAlH4 was prepared by melt infiltration into mesoporous carbon scaffolds. In the first cycle, the electrochemical reversibility of nanoconfined NaAlH4 was improved from around 30 to 70% compared to that of nonconfined NaAlH4. Cyclic voltammetry revealed that nanoconfinement alters the conversion pathway, and operando powder X-ray diffraction showed that the conversion from NaAlH4 into Na3AlH6 is favored over the formation of LiNa2AlH6. The electrochemical reactivity of the carbon scaffolds has also been investigated to study their contribution to the overall capacity of the electrodes.

15.
Dalton Trans ; 45(47): 19002-19011, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-27853777

ABSTRACT

Two new bimetallic sodium or potassium lanthanum borohydrides, NaLa(BH4)4 and K3La(BH4)6, are formed using La(BH4)3 free of metal halide by-products. NaLa(BH4)4 crystallizes in an orthorhombic crystal system with unit cell parameters, a = 6.7987(19), b = 17.311(5), c = 7.2653(19) Å and space group symmetry Pbcn. This compound has a new structure type built from brucite-like layers of octahedra (hcp packing of anions) with half of the octahedral sites empty leading to octahedral chains similar to rutile (straight chains) or α-PbO2 (zig-zag chains). K3La(BH4)6 crystallizes in the monoclinic crystal system with unit cell parameters a = 7.938(2), b = 8.352(2), c = 11.571(3) Å, ß = 90.19(6)° and space group P21/n with a double-perovskite type structure. Thermogravimetric analysis shows a mass loss of 5.86 and 2.83 wt% for NaLa(BH4)4 and K3La(BH4)6, respectively, in the temperature range of room temperature to 400 °C. Mass spectrometry shows that hydrogen release starts at 212 and 275 °C for NaLa(BH4)4 and K3La(BH4)6, respectively and confirms that no diborane is released. Sieverts' measurements reveal that 2.03 and 0.49 wt% of hydrogen can be released from the NaLa(BH4)4 and K3La(BH4)6, respectively, during the second hydrogen desorption cycle at the selected physical condition for hydrogen absorption.

16.
Inorg Chem ; 55(18): 9306-15, 2016 Sep 19.
Article in English | MEDLINE | ID: mdl-27598036

ABSTRACT

Bayerite was treated under hydrothermal conditions (120, 130, 140, and 150 °C) to prepare a series of layered double hydroxides (LDHs) with an ideal composition of ZnAl4(OH)12(SO4)0.5·nH2O (ZnAl4-LDHs). These products were investigated by both bulk techniques (powder X-ray diffraction (PXRD), transmission electron microscopy, and elemental analysis) and atomic-level techniques ((1)H and (27)Al solid-state NMR, IR, and Raman spectroscopy) to gain a detailed insight into the structure of ZnAl4-LDHs and sample composition. Four structural models (one stoichiometric and three different defect models) were investigated by Rietveld refinement of the PXRD data. These were assessed using the information obtained from other characterization techniques, which favored the ideal (nondefect) structural model for ZnAl4-LDH, as, for example, (27)Al magic-angle spinning NMR showed that excess Al was present as amorphous bayerite (Al(OH)3) and pseudoboehmite (AlOOH). Moreover, no evidence of cation mixing, that is, partial substitution of Zn(II) onto any of four Al sites, was observed. Altogether this study highlights the challenges involved to synthesize pure ZnAl4-LDHs and the necessity to use complementary techniques such as PXRD, elemental analysis, and solid-state NMR for the characterization of the local and extended structure of ZnAl4-LDHs.

17.
Dalton Trans ; 45(19): 8291-9, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27109871

ABSTRACT

Here we report the synthesis, mechanism of formation, characterization and thermal decomposition of new barium borohydride chlorides prepared by mechanochemistry and thermal treatment of MBH4-BaCl2, M = Li, Na or K in ratios 1 : 1 and 1 : 2. Initially, orthorhombic barium chloride, o-BaCl2 transforms into o-Ba(BH4)xCl2-x, x ∼ 0.15. Excess LiBH4 leads to continued anion substitution and a phase transformation into hexagonal barium borohydride chloride h-Ba(BH4)xCl2-x, which accommodates higher amounts of borohydride, possibly x ∼ 0.85 and resembles h-BaCl2. Thus, two solid solutions are in equilibrium during mechano-chemical treatment of LiBH4-BaCl2 (1 : 1) whereas LiBH4-BaCl2 (2 : 1) converts to h-Ba(BH4)0.85Cl1.15. Upon thermal treatment at T > ∼200 °C, h-Ba(BH4)0.85Cl1.15 transforms into another orthorhombic barium borohydride chloride compound, o-Ba(BH4)0.85Cl1.15, which is structurally similar to o-BaBr2. The samples with M = Na and K have lower reactivity and form o-Ba(BH4)xCl2-x, x ∼ 0.1 and a solid solution of sodium chloride dissolved in solid sodium borohydride, Na(BH4)1-xClx, x = 0.07. The new compounds and reaction mechanisms are investigated by in situ synchrotron radiation powder X-ray diffraction (SR-PXD), Fourier transform infrared spectroscopy (FT-IR) and simultaneous thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), mass spectroscopy (MS) and temperature programmed photographic analysis (TPPA).

18.
Nano Lett ; 16(4): 2375-80, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-26930492

ABSTRACT

Alkali ion intercalation compounds used as battery electrodes often exhibit first-order phase transitions during electrochemical cycling, accompanied by significant transformation strains. Despite ∼30 years of research into the behavior of such compounds, the relationship between transformation strain and electrode performance, especially the rate at which working ions (e.g., Li) can be intercalated and deintercalated, is still absent. In this work, we use the LiMnyFe1-yPO4 system for a systematic study, and measure using operando synchrotron radiation powder X-ray diffraction (SR-PXD) the dynamic strain behavior as a function of the Mn content (y) in powders of ∼50 nm average diameter. The dynamically produced strain deviates significantly from what is expected from the equilibrium phase diagrams and demonstrates metastability but nonetheless spans a wide range from 0 to 8 vol % with y. For the first time, we show that the discharge capacity at high C-rates (20-50C rate) varies in inverse proportion to the transformation strain, implying that engineering electrode materials for reduced strain can be used to maximize the power capability of batteries.

19.
Inorg Chem ; 54(15): 7402-14, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-26196159

ABSTRACT

Fourteen solvent- and halide-free ammine rare-earth metal borohydrides M(BH4)3·nNH3, M = Y, Gd, Dy, n = 7, 6, 5, 4, 2, and 1, have been synthesized by a new approach, and their structures as well as chemical and physical properties are characterized. Extensive series of coordination complexes with systematic variation in the number of ligands are presented, as prepared by combined mechanochemistry, solvent-based methods, solid-gas reactions, and thermal treatment. This new synthesis approach may have a significant impact within inorganic coordination chemistry. Halide-free metal borohydrides have been synthesized by solvent-based metathesis reactions of LiBH4 and MCl3 (3:1), followed by reactions of M(BH4)3 with an excess of NH3 gas, yielding M(BH4)3·7NH3 (M = Y, Gd, and Dy). Crystal structure models for M(BH4)3·nNH3 are derived from a combination of powder X-ray diffraction (PXD), (11)B magic-angle spinning NMR, and density functional theory (DFT) calculations. The structures vary from two-dimensional layers (n = 1), one-dimensional chains (n = 2), molecular compounds (n = 4 and 5), to contain complex ions (n = 6 and 7). NH3 coordinates to the metal in all compounds, while BH4(-) has a flexible coordination, i.e., either as a terminal or bridging ligand or as a counterion. M(BH4)3·7NH3 releases ammonia stepwise by thermal treatment producing M(BH4)3·nNH3 (6, 5, and 4), whereas hydrogen is released for n ≤ 4. Detailed analysis of the dihydrogen bonds reveals new insight about the hydrogen elimination mechanism, which contradicts current hypotheses. Overall, the present work provides new general knowledge toward rational materials design and preparation along with limitations of PXD and DFT for analysis of structures with a significant degree of dynamics in the structures.

20.
Dalton Trans ; 44(9): 3988-96, 2015 Mar 07.
Article in English | MEDLINE | ID: mdl-25611294

ABSTRACT

Solvent-based synthesis and characterization of α-Mn(BH4)2 and a new nanoporous polymorph of manganese borohydride, γ-Mn(BH4)2, via a new solvate precursor, Mn(BH4)2·1/2S(CH3)2, is presented. Manganese chloride is reacted with lithium borohydride in a toluene/dimethylsulfide mixture at room temperature, which yields halide and solvent-free manganese borohydride after extraction with dimethylsulfide (DMS) and subsequent removal of residual solvent. This work constitutes the first example of establishing a successful, reproducible solvent-based synthesis route for a pure, crystalline, stable transition metal borohydride. The new polymorph, γ-Mn(BH4)2, is shown to be the manganese counterpart of the zeolite-like compound, γ-Mg(BH4)2 (cubic, a = 16.209(1) Å, space group Id3̄a). It is verified that large pores (diameter > 6.0 Å) exist in this structure. The solvate, Mn(BH4)2·1/2S(CH3)2, is subsequently shown to be the analogue of Mg(BH4)2·1/2S(CH3)2. As the structural analogies between Mg(BH4)2 and Mn(BH4)2 became evident a new polymorph of Mg(BH4)2 was identified and termed ζ-Mg(BH4)2. ζ-Mg(BH4)2 is the structural counterpart of α-Mn(BH4)2. All synthesis products are characterized employing synchrotron radiation-powder X-ray diffraction, infrared spectroscopy and thermogravimetric analysis in combination with mass spectroscopy. Thermal analysis reveals the decomposition of Mn(BH4)2 to occur at 160 °C, accompanied by a mass loss of 14.8 wt%. A small quantity of the desorbed gaseous species is identified as diborane (ρ(m)(Mn(BH4)2) = 9.5 wt% H2), while the remaining majority is found to be hydrogen.

SELECTION OF CITATIONS
SEARCH DETAIL
...