Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 594(7863): 345-355, 2021 06.
Article in English | MEDLINE | ID: mdl-34135518

ABSTRACT

Artificial intelligence (AI) is accelerating the development of unconventional computing paradigms inspired by the abilities and energy efficiency of the brain. The human brain excels especially in computationally intensive cognitive tasks, such as pattern recognition and classification. A long-term goal is de-centralized neuromorphic computing, relying on a network of distributed cores to mimic the massive parallelism of the brain, thus rigorously following a nature-inspired approach for information processing. Through the gradual transformation of interconnected computing blocks into continuous computing tissue, the development of advanced forms of matter exhibiting basic features of intelligence can be envisioned, able to learn and process information in a delocalized manner. Such intelligent matter would interact with the environment by receiving and responding to external stimuli, while internally adapting its structure to enable the distribution and storage (as memory) of information. We review progress towards implementations of intelligent matter using molecular systems, soft materials or solid-state materials, with respect to applications in soft robotics, the development of adaptive artificial skins and distributed neuromorphic computing.


Subject(s)
Artificial Intelligence , Biomimetic Materials , Biomimetics/trends , Equipment Design , Robotics/trends , Colloids , Environment , Enzymes/metabolism , Homeostasis , Humans , Physical Stimulation , Skin, Artificial
2.
J Mater Chem B ; 3(3): 475-480, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-32262050

ABSTRACT

Redox-active liposomes are prepared by the incorporation of tetrathiafulvalene-cholesterol conjugate 1 in phospholipid vesicles. The oxidation of tetrathiafulvalene (TTF) on the surface of the liposomes in aqueous solution is monitored by UV-vis spectroscopy. It is shown that metastable (TTF+˙)2π-dimers of the mono-oxidized cation radical are formed due to the high local concentration of TTF groups in the lipid membrane. These dimers can be further stabilized by the addition of cucurbit[8]uril or by reduction of the lateral mobility in the membrane by variation of the lipid composition.

3.
Lab Chip ; 5(2): 163-70, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15672130

ABSTRACT

This paper describes the integration of opto-chemosensors in microfluidics networks. Our technique exploits the internal surface of the network as a platform to build a sensing system by coating the surface with a self-assembled monolayer and subsequently binding a fluorescent sensing molecule to the monolayer. Fluorescent molecules were used that can switch between a fluorescent and a non-fluorescent state, depending on the acidity of the surrounding solution. Two systems were investigated. The first employs surface confinement of a Rhodamine B dye in a glass micro channel that serves as a molecular switch in organic solutions. Upon rinsing the micro channels with acidic or basic solutions it was possible to switch between the fluorescent and non-fluorescent forms reversibly. Moreover, this system could be used to monitor the mixing of two solutions of different acidity along the micro channel. To widen the scope of optical sensing in micro channels an Oregon Green dye derivative was immobilized, which functions as a sensing molecule for pH differences in aqueous solutions. In this case, a hybrid system was used consisting of a glass slide and PDMS channels. The fluorescence intensity was found to be directly correlated to the pH of the solution in contact, indicating the possibility of using such a system as a pH sensor. These systems allow real-time measurements and can be easily implemented in micro- and nanofluidics systems thus enabling analysis of extremely small sample volumes in a fast and reproducible manner.

4.
Chem Phys Lipids ; 109(1): 63-74, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11163345

ABSTRACT

The lipid head groups in the inner leaflet of unilamellar bilayer vesicles of the synthetic lipids DHPBNS and DDPBNS can be selectively oligomerised. Earlier studies have established that these vesicles fuse much slower and less extensively upon oligomerisation of the lipid head groups. The morphology and calcium-induced fusion of vesicles of DHPBNS and DDPBNS were investigated using cryo-electron microscopy. DHPBNS vesicles are not spherical but flattened, ellipsoidal structures. Upon addition of CaCl(2), DHPBNS vesicles with an oligomerised inner leaflet were occasionally observed in an arrested hemifused state. However, the evidence for hemifusion is not equivocal due to potential artefacts of sample preparation. DDPBNS vesicles show the expected spherical morphology. Upon addition of excess CaCl(2), DDPBNS vesicles fuse into dense aggregates that show a regular spacing corresponding to the bilayer width. Upon addition of EDTA, the aggregates readily disperse into large unilamellar vesicles. At low concentration of calcium ion, DDPBNS vesicles with an oligomerised inner leaflet form small multilamellar aggregates, in which a spacing corresponding to the bilayer width appears. Addition of excess EDTA results in slow dispersal of the Ca2+-lipid aggregates into a heterogeneous mixture of bilamellar, spherical vesicles and networks of thread-like vesicles. These lipid bilayer rearrangements are discussed within the context of shape transformations and fusion of lipid membranes.


Subject(s)
Calcium/chemistry , Lipid Bilayers , Microscopy, Electron , Polymers/chemistry
5.
Cell Biol Int ; 24(11): 787-97, 2000.
Article in English | MEDLINE | ID: mdl-11067763

ABSTRACT

Sendai virus fuses efficiently with small and large unilamellar vesicles of the lipid 1,2-di-n-hexadecyloxypropyl-4- (beta-nitrostyryl) phosphate (DHPBNS) at pH 7.4 and 37 degrees C, as shown by lipid mixing assays and electron microscopy. However, fusion is strongly inhibited by oligomerization of the head groups of DHPBNS in the bilayer vesicles. The enthalpy associated with fusion of Sendai virus with DHPBNS vesicles was measured by isothermal titration microcalorimetry, comparing titrations of Sendai virus into (i) solutions of DHPBNS vesicles (which fuse with the virus) and (ii) oligomerized DHPBNS vesicles (which do not fuse with the virus), respectively. The observed heat effect of fusion of Sendai virus with DHPBNS vesicles is strongly dependent on the buffer medium, reflecting a partial charge neutralization of the Sendai F and HN proteins upon insertion into the negatively-charged vesicle membrane. No buffer effect was observed for the titration of Sendai virus into oligomerized DHPBNS vesicles, indicating that inhibition of fusion is a result of inhibition of insertion of the fusion protein into the target membrane. Fusion of Sendai virus with DHPBNS vesicles is endothermic and entropy-driven. The positive enthalpy term is dominated by heat effects resulting from merging of the protein-rich viral envelope with the lipid vesicle bilayers rather than by the fusion of the viral with the vesicle bilayers per se.


Subject(s)
Lipids/immunology , Membrane Fusion/physiology , Membrane Lipids/metabolism , Respirovirus/metabolism , Viral Fusion Proteins/metabolism , Calorimetry/methods , Cell Membrane/virology , Lipids/chemistry , Microscopy, Electron/methods , Molecular Structure , Respirovirus/physiology , Respirovirus/ultrastructure , Titrimetry
6.
Biophys J ; 76(1 Pt 1): 374-86, 1999 Jan.
Article in English | MEDLINE | ID: mdl-9876149

ABSTRACT

Membrane fusion has been examined in a model system of small unilamellar vesicles of synthetic lipids that can be oligomerized through the lipid headgroups. The oligomerization can be induced either in both bilayer leaflets or in the inner leaflet exclusively. Oligomerization leads to denser lipid headgroup packing, with concomitant reduction of lipid lateral diffusion and membrane permeability. As evidenced by lipid mixing assays, electron microscopy, and light scattering, calcium-induced fusion of the bilayer vesicles is strongly retarded and inhibited by oligomerization. Remarkably, oligomerization of only the inner leaflet of the bilayer is already sufficient to affect fusion. The efficiency of inhibition and retardation of fusion critically depend on the relative amount of oligomeric lipid present, on the concentration of calcium ions, and on temperature. Implications for the mechanism of bilayer membrane fusion are discussed in terms of lipid lateral diffusion and membrane curvature effects.


Subject(s)
Membrane Fusion , Membrane Lipids/chemistry , Biophysical Phenomena , Biophysics , Calcium/pharmacology , Diffusion , Edetic Acid/pharmacology , In Vitro Techniques , Lipid Bilayers/chemistry , Liposomes , Magnetic Resonance Spectroscopy , Membrane Fusion/drug effects , Membrane Fusion/physiology , Microscopy, Electron , Models, Biological , Solubility , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...