Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res B Appl Biomater ; 82(2): 428-39, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17245746

ABSTRACT

Even after decades of clinical use, our ability to quantify wear across total hip replacement implant surfaces is largely limited to single value measurements. The influence of patient factors on wear remains enigmatic. This pilot study for the development of three-dimensional laser micrometry (3DLM) introduces an easy, accurate means of 'mapping' and quantifying material removal. A three-dimensional laser micrometer was constructed using a laser micrometer having an accuracy of 0.5 microm. A 3D surface map is triangulated from a point cloud consisting of approximately 140,000 individual points. Comparison to a reference sphere determines radial wear over the entire surface. 3DLM was able to map and quantify fine scale surface features. Even for zirconia on relatively soft ultra-high molecular weight polyethylene, this technique maps the contributions of localized wear at the macroscopic level. The 0.5 microm (or greater) accuracy of these lasers allows us to image surfaces with a high degree of confidence. This analysis lends itself well to automation, and we anticipate that this advance will prove valuable in establishing that each head and cup combination emerging from a given clinical environment has unique wear patterns as observed in this trial data set.


Subject(s)
Arthroplasty, Replacement, Hip , Equipment Failure Analysis/methods , Hip Prosthesis/standards , Lasers , Chromium Alloys/chemistry , Humans , Surface Properties , Zirconium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...