Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39029128

ABSTRACT

The possibility of converting waste plastics into carbon dots (CDs) with 100% efficiencies using KMnO4 has emerged as a significant discovery in mitigating plastic pollution and upcycling. However, the lack of tunability of their properties, viz. aerial O2 harvesting, light-induced autophagy, and photoactivity using air as a free oxidant, has remained a bottleneck. Besides, the toxicity of KMnO4 makes the process less sustainable. Attempting to bridge these gaps, herein, we demonstrate the preparation of CDs using polyethylene with enormous controllability of their properties by utilizing less-toxic and metal-residue-free oxidizers, e.g., H2O2, HNO3, HClO4, and NaClO. We obtain structurally diverse CDs with controllable luminescent quantum yields (∼0.5-8%), excitonic lifetimes (1.3-2.3 ns), and binding energies (147-290 meV). These CDs exhibit a hugely extended range of molecular O2 harvesting (∼405-650 µM) with different amounts of strongly and weakly surface-bound O2 molecules within an estimated ratio of ∼0.77-2.51. Autophagy varied from 14 days to a nearly "no-autophagy" show. We efficiently utilized their oxygen harvesting and photocatalytic abilities to synthesize imine compounds from the corresponding amines in the open air (rate constant of ∼0.055 min-1), surpassing the literature efficiencies achieved using an O2 flow and noble metals. Notably, due to oxygen harvesting by CDs, no additional rate enhancement was observed after O2 purging, establishing the role of CDs in making free air an excellent oxidizing agent.

2.
ACS Appl Mater Interfaces ; 15(46): 53604-53613, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37937526

ABSTRACT

Hybrid halide perovskites (HHPs), whose every branch generates intrusiveness, have been utilized in solar cells from a broader perspective. However, the inclusiveness of employing HHP as a photocatalyst is in its initial stage. This study mainly focuses on the unexpected utilization of, so far, undesirable material vacancy-ordered MA2SnBr6 quantum dots synthesized from MASnBr3 nanosheets. Here, the quantum confinement grounded a large blue shift in ultraviolet (UV) and photoluminescence (PL) spectra with a Stokes shift of 420 meV, where the band gap increase is observed as size decreases in MA2SnBr6. Remarkably, MA2SnBr6 exhibits air and moisture stability, better charge transfer, and high oxidation potential compared to MASnBr3. The first-principles-based atomistic computations reveal the strain relaxation in the Sn-Br framework that structurally stabilizes the MA2SnBr6 lattice. Furthermore, the direct band gap and strongly localized valence band edge give rise to a new potential photocatalyst MA2SnBr6 for efficient solar-driven C(sp3)─H activation of cyclohexane and toluene under ambient conditions.

3.
Nanoscale ; 15(38): 15590-15599, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37728049

ABSTRACT

Achieving a high electrocatalytic performance using a completely metal-free electrocatalyst, preferably based on only carbonaceous materials, remains a challenge. Alternatively, an efficient composite of a carbon nanostructure and a non-noble metal with minimum dependence on a metal holds immense potential. Although single-atom catalysis brings superior performance, its complex synthetic strategy limits its large-scale implementation. Previous investigation has shown that atomic dispersion (Fe-Nx-C) is accompanied by higher metal-loss compared to nanoparticle formation (Fe-NPs-N-C). Therefore, to achieve minimum metal loss, we first incorporated iron nanoparticles (Fe NPs) to N-doped carbon (N-C) and then exposed them to a cheap carbon source, melamine at high temperature, resulting in the growth of carbon nanotubes (CNTs) catalysed by those Fe NPs loaded on N-C (Fe-NPs-N-C). Thermogravimetric analysis showed that the metal-retention in the composite is higher than that in the bare carbon nanotube and even the atomically dispersed Fe-active sites on N-C. The composite material (Fe-NPs-N-C/CNT) shows a high half-wave potential (0.89 V vs. RHE) which is superior to that of commercial Pt/C towards the oxygen reduction reaction (ORR). The enhanced activity is attributed to the synergistic effect of high conductivity of CNTs and active Fe-sites as the composite exceeds the individual electrocatalytic performance shown by Fe-CNTs & Fe-NPs-N-C, and even that of atomically dispersed Fe-active sites on N-C.

4.
ACS Appl Mater Interfaces ; 14(43): 49014-49025, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36278376

ABSTRACT

In recent years, extensive research has been directed toward the successful preparation of nanoscale luminescent thermometers with high sensitivities operative in a broad temperature range. To achieve this goal, we have devised a unique design and facile multistep synthesis of Zr-ctpy-NMOF@TbxEuy compounds by confining Ln-complexes (Ln = Eu3+/Tb3+) into a robust nanoscale Zr-NMOF (MOF-808) via postsynthetic modification. Covalent grafting of 4-(4'-carboxyphenyl)-2,2':6,2″terpyridine ligand (ctpy) with a high triplet state energy and corresponding immobilization of bimetallic Ln3+ ions resulted in yellow light-emitting Zr-ctpy-NMOF@Tb1.66Eu0.14 to achieve a sensitivity of 5.2% K-1 (thermal uncertainty dT < 1 K) operative over a broad temperature range of 25-400 K. To defeat the odds related to the detection of minute temperature changes using luminescent materials, we prepared a white light-emitting Zr-ctpy-NMOF@Tb1.4Eu0.31 that showed temperature-modulated multispectrum chromism where the color drastically changes from green (at 25 K, Q.Y.: 20.21%) to yellowish-green (at 200 K, Q.Y.: 23.13%) to white (at 300 K, Q.Y.: 26.4%) to orange (at 350 K, Q.Y.: 26.93%) and finally red (at 400 K, Q.Y.: 28.2%) with a high energy transfer efficiency of 49.8%, which is further supported by electron-phonon coupling.

SELECTION OF CITATIONS
SEARCH DETAIL
...