Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Small ; 19(46): e2303189, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37471172

ABSTRACT

Two donor-acceptor type tetrathiafulvalene (TTF)-based covalent organic frameworks (COFs) are investigated as electrodes for symmetric supercapacitors in different electrolytes, to understand the charge storage and dynamics in 2D COFs. Till-date, most COFs are investigated as Faradic redox pseudocapacitors in aqueous electrolytes. For the first time, it is tried to enhance the electrochemical performance and stability of pristine COF-based supercapacitors by operating them in the non-Faradaic electrochemically double layer capacitance region. It is found that the charge storage mechanism of ionic liquid (IL) electrolyte based supercapacitors is dependent on the micropore size and surface charge density of the donor-acceptor COFs. The surface charge density alters due to the different electron acceptor building blocks, which in turn influences the dense packing of the IL near its pore. The micropores induce pore confinement of IL in the COFs by partial breaking of coulomb ordering and rearranging it. The combination of these two factors enhance the charge storage in the highly microporous COFs. The density functional theory calculations support the same. At 1 A g-1 , TTF-porphyrin COF provides capacitance of 42, 70, and 130 F g-1 in aqueous, organic, and IL electrolyte respectively. TTF-diamine COF shows a similar trend with 100 F g-1 capacitance in IL.

2.
ACS Appl Mater Interfaces ; 15(29): 35092-35106, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37462114

ABSTRACT

Covalent organic frameworks (COFs) are emerging as a new class of photoactive organic semiconductors, which possess crystalline ordered structures and high surface areas. COFs can be tailor-made toward specific (photocatalytic) applications, and the size and position of their band gaps can be tuned by the choice of building blocks and linkages. However, many types of building blocks are still unexplored as photocatalytic moieties and the scope of reactions photocatalyzed by COFs remains quite limited. In this work, we report the synthesis and application of two bipyridine- or phenylpyridine-based COFs: TpBpyCOF and TpPpyCOF. Due to their good photocatalytic properties, both materials were applied as metal-free photocatalysts for the tandem aerobic oxidation/Povarov cyclization and α-oxidation of N-aryl glycine derivatives, with the bipyridine-based TpBpyCOF exhibiting the highest activity. By expanding the range of reactions that can be photocatalyzed by COFs, this work paves the way toward the more widespread application of COFs as metal-free heterogeneous photocatalysts as a convenient alternative for commonly used homogeneous (metal-based) photocatalysts.

3.
ACS Appl Mater Interfaces ; 14(45): 50923-50931, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36342965

ABSTRACT

Covalent organic frameworks (COFs) are an emerging class of porous organic polymers that have been utilized as scaffolds for anchoring metal active species to act as heterogeneous catalysts. Though several examples of such COFs exist, a thorough experimental and computational analysis on such catalysts is limited. In this work, a series of two-dimensional (2D) imine COFs (TTA-DFB COF (N), TTA-TBD COF (N∧O), and TTA-DFP COF(N∧N)) were synthesized by using suitable building units to obtain three different coordination sites (N, N∧O, and N∧N). These were post-modified with Pd(II) to catalyze the Suzuki-Miyaura coupling reaction. Pd@TTA-DFB COF, where Pd(II) was coordinated to N sites, showed the fastest reactivity and lower stability. Pd@TTA-DFP COF showed highest stability but slowest reactivity. Pd@TTA-TBD COF was the best among the three with both high stability and fast reactivity. By combining both experimental and computational results, we conclude that the Pd(II) to Pd(0) reduction is a key step in the difference between the catalytic reactivities of the three COFs. This study demonstrates the importance of the building block approach to design COFs for efficient heterogeneous catalysis and to understand the fate of the reaction profile.

4.
Phys Chem Chem Phys ; 21(7): 3932-3941, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30702721

ABSTRACT

CO2 hydrogenation products are not only useful chemical sources but also promising hydrogen storage materials. A DFT study has been carried out on the CO2 hydrogenation reaction catalyzed by a series of bifunctional aminomethyl based Mn(i) complexes. We find that the N-H functionality in the aminomethyl ligand shows a metal-ligand cooperation (MLC) mechanism for the CO2 hydrogenation reaction. Here, the N-H functionality assists the MLC mechanism by stabilizing the formate anion via N-HO hydrogen bonding interactions. This is opposite to the MLC mechanism proposed by Noyori for ketone hydrogenation, where the N-H functionality actively participates in the reaction mechanism via cleavage/formation of N-H/M-H bonds. Furthermore, the stabilized formate anion initiates heterolytic H2 cleavage, which requires a very low barrier compared to external base/ligand participation heterolytic H2 cleavage. Therefore, the bifunctional aminomethyl based Mn(i) complexes are promising for the CO2 hydrogenation reaction and our study may be very helpful for experimentalists for the development of efficient bifunctional ligand-based catalysts for the CO2 hydrogenation reaction.

5.
Chemphyschem ; 20(3): 383-391, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30485628

ABSTRACT

Using state-of-the-art density functional theoretical calculations, we have modelled a facetted CdS nanotube (NT) catalyst for photocatalytic water splitting. The overall photocatalytic activity of the CdS photocatalyst has been predicted based on the electronic structures, band edge alignment, and overpotential calculations. For comparisons, we have also investigated the water splitting process over bulk CdS. The band edge alignment along with the oxygen evolution reaction/hydrogen evolution reaction (OER/HER) mechanism studies help us find out the effective overpotential for the overall water splitting on these surfaces. Our study shows that the CdS NT has a highly stabilized valence band edge compared to that of bulk CdS owing to strong p-d mixing. The highly stabilized valence band edge is important for the hole-transfer process and reduces the risk of electron-hole recombination. CdS nanotube requires less overpotential for water oxidation reaction than the bulk CdS. Our findings suggest that the efficiency of the water oxidation/reduction process further improves in CdS as we reduce its dimensionality, that is going from bulk CdS to one-dimensional nanotube. Furthermore, the stabilized valence band edge of CdS nanotube also improves the photostability of CdS, which is a problem for bulk CdS.

6.
Chem Asian J ; 13(21): 3198-3203, 2018 Nov 02.
Article in English | MEDLINE | ID: mdl-30076760

ABSTRACT

Recently, rechargeable non-aqueous Mg-air batteries have gained a lot of interest as the next-generation energy storage device due to the high theoretical volumetric density (3832 Ah L-1 for Mg anode vs. 2062 Ah L-1 for Li), low cost and safety. The field of Mg-air batteries is in the initial stage of development having a limited number of experimental and theoretical reports, in which mainly a carbon cathode is used; however, the information regarding the structural form of carbon is still missing. In this work, using first-principles density functional theory (DFT) calculations, we demonstrate the possibility of graphene and graphite as a cathode material towards Mg-air batteries by studying the initial MgO and MgO2 nucleation processes on the surfaces of graphene and graphite. The calculated free energy diagrams for the redox reactions of oxygen are used to identify the rate-determining step controlling the overpotentials for initial nucleation of MgO and MgO2 . We observe that graphene and graphite surfaces show similar reactivity towards the nucleation of MgO or MgO2 , and the overpotential of the controlling steps for MgO2 nucleation is comparatively less than that of MgO nucleation, which is supported by a recent experimental study, where a higher discharge voltage was observed in a cell having a mixed MgO/MgO2 discharge product than MgO-based cells. Furthermore, the preferable formation of MgO2 cluster compared to MgO on the graphene surface during the ab initio molecular dynamic (AIMD) simulations confirms the selectivity of MgO2 formation over MgO as the final discharge product. We believe that our study will be helpful in understanding the initial nucleation processes during the oxygen reduction reaction (ORR) mechanism and development of suitable cathodes for the future Mg-air batteries.

7.
Nanoscale ; 10(28): 13792, 2018 Jul 19.
Article in English | MEDLINE | ID: mdl-29978174

ABSTRACT

Correction for 'Crystal-defect-induced facet-dependent electrocatalytic activity of 3D gold nanoflowers for the selective nanomolar detection of ascorbic acid' by Sandip Kumar De, et al., Nanoscale, 2018, 10, 11091-11102.

8.
Nanoscale ; 10(23): 11091-11102, 2018 Jun 14.
Article in English | MEDLINE | ID: mdl-29872830

ABSTRACT

Understanding and exploring the decisive factors responsible for superlative catalytic efficiency is necessary to formulate active electrode materials for improved electrocatalysis and high-throughput sensing. This research demonstrates the ability of bud-shaped gold nanoflowers (AuNFs), intermediates in the bud-to-blossom gold nanoflower synthesis, to offer remarkable electrocatalytic efficiency in the oxidation of ascorbic acid (AA) at nanomolar concentrations. Multicomponent sensing in a single potential sweep is measured using differential pulse voltammetry while the kinetic parameters are estimated using electrochemical impedance spectroscopy. The outstanding catalytic activity of bud-structured AuNF [iAuNFp(Bud)/iGCp ≅ 100] compared with other bud-to-blossom intermediate nanostructures is explained by studying their structural transitions, charge distributions, crystalline patterns, and intrinsic irregularities/defects. Detailed microscopic analysis shows that density of crystal defects, such as edges, terraces, steps, ledges, kinks, and dislocation, plays a major role in producing the high catalytic efficiency. An associated ab initio simulation provides necessary support for the projected role of different crystal facets as selective catalytic sites. Density functional theory corroborates the appearance of inter- and intra-molecular hydrogen bonding within AA molecules to control the resultant fingerprint peak potentials at variable concentrations. Bud-structured AuNF facilitates AA detection at nanomolar levels in a multicomponent pathological sample.


Subject(s)
Ascorbic Acid/analysis , Gold , Nanostructures , Dielectric Spectroscopy , Electrodes
9.
Phys Chem Chem Phys ; 20(18): 12535-12542, 2018 May 09.
Article in English | MEDLINE | ID: mdl-29691520

ABSTRACT

A series of flexible proton-responsive group substituted N^N-bidentate ligand based Mn(i) complexes have been studied for base free CO2 hydrogenation. We show here that proton responsive ligands play a critical role in base free CO2 hydrogenation. Our calculated reaction free energy barrier values for heterolytic H2 cleavage show that such flexible proton-responsive ligands require a very low activation energy (∼3 kcal mol-1) barrier. Such flexible proton responsive ligands improve the strong dihydrogen (HH) bonding, which in turn improves heterolytic H2 cleavage - an important step for base free CO2 hydrogenation. Therefore, we believe that such flexible proton responsive ligand-substituted metal complexes can be promising for base free CO2 hydrogenation reactions.

10.
Chemistry ; 23(24): 5696-5707, 2017 Apr 27.
Article in English | MEDLINE | ID: mdl-28121053

ABSTRACT

Organomercurials, such as methylmercury (MeHg+ ), are among the most toxic materials to humans. Apart from inhibiting proteins, MeHg+ exerts its cytotoxicity through strong binding with endogenous thiols cysteine (CysH) and glutathione (GSH) to form MeHgCys and MeHgSG complexes. Herein, it is reported that the N,N-disubstituted benzimidazole-based thione 1 containing a N-CH2 CH2 OH substituent converts MeHgCys and MeHgSG complexes to less toxic water-soluble HgS nanoparticles (NPs) and releases the corresponding free thiols CysH and GSH from MeHgCys and MeHgSG, respectively, in solution by unusual ligand-exchange reactions in phosphate buffer at 37 °C. However, the corresponding N-substituted benzimidazole-based thione 7 and N,N-disubstituted imidazole-based thione 3, in spite of containing a N-CH2 CH2 OH substituent, failed to convert MeHgX (X=Cys, and SG) to HgS NPs under identical reaction conditions, which suggests that not only the N-CH2 CH2 OH moiety but the benzimidazole ring and N,N-disubstitution in 1, which leads to the generation of a partial positive charge at the C2 atom of the benzimidazole ring in 1:1 MeHg-conjugated complex of 1, are crucial to convert MeHgX to HgS NPs under physiologically relevant conditions.

11.
Nanoscale ; 8(29): 14117-26, 2016 Aug 07.
Article in English | MEDLINE | ID: mdl-27321785

ABSTRACT

High-temperature ferromagnetic materials with planar surfaces are promising candidates for spintronics applications. Using state-of-the-art density functional theory (DFT) calculations, transition metal (TM = Cr, Mn, and Fe) incorporated graphitic carbon nitride (TM@gt-C3N4) systems are investigated as possible spintronics devices. Interestingly, ferromagnetism and half-metallicity were observed in all of the TM@gt-C3N4 systems. We find that Cr@gt-C3N4 is a nearly half-metallic ferromagnetic material with a Curie temperature of ∼450 K. The calculated Curie temperature is noticeably higher than other planar 2D materials studied to date. Furthermore, it has a steel-like mechanical stability and also possesses remarkable dynamic and thermal (500 K) stability. The calculated magnetic anisotropy energy (MAE) in Cr@gt-C3N4 is as high as 137.26 µeV per Cr. Thereby, such material with a high Curie temperature can be operated at high temperatures for spintronics devices.

12.
Sci Rep ; 6: 25590, 2016 05 09.
Article in English | MEDLINE | ID: mdl-27157072

ABSTRACT

Nitric oxide (NO) reduction pathways are systematically studied on a (111) facet of the octahedral nickel (Ni85) nanocluster in the presence/absence of hydrogen. Thermodynamic (reaction free energies) and kinetic (free energy barriers, and temperature dependent reaction rates) parameters are investigated to find out the most favoured reduction pathway for NO reduction. The catalytic activity of the Ni-nanocluster is investigated in greater detail toward the product selectivity (N2 vs. N2O vs. NH3). The previous theoretical (catalyzed by Pt, Pd, Rh and Ir) and experimental reports (catalyzed by Pt, Ag, Pd) show that direct N-O bond dissociation is very much unlikely due to the high-energy barrier but our study shows that the reaction is thermodynamically and kinetically favourable when catalysed by the octahedral Ni-nanocluster. The catalytic activity of the Ni-nanocluster toward NO reduction reaction is very much efficient and selective toward N2 formation even in the presence of hydrogen. However, N2O (one of the major by-products) formation is very much unlikely due to the high activation barrier. Our microkinetic analysis shows that even at high hydrogen partial pressures, the catalyst is very much selective toward N2 formation over NH3.

13.
Angew Chem Int Ed Engl ; 54(32): 9323-7, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-26205242

ABSTRACT

Organomercurials including methylmercury are ubiquitous environmental pollutants and highly toxic to humans. Now it could be shown that N-methylimidazole based thiones/selones having an N-CH2CH2OH substituent are remarkably effective in detoxifying various organomercurials to produce less toxic HgE (E=S, Se) nanoparticles. Compounds lacking the N-CH2CH2OH substituent failed to produce HgE nanoparticles upon treatment with organomercurials, suggesting that this moiety plays a crucial role in the detoxification by facilitating the desulfurization and deselenization processes. This novel way of detoxifying organomercurials may lead to the discovery of new compounds to treat patients suffering from methylmercury poisoning.


Subject(s)
Environmental Pollutants/chemistry , Methylmercury Compounds/chemistry , Environmental Pollutants/metabolism , Hydroxides/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Methylmercury Compounds/metabolism , Potassium Compounds/chemistry , Selenium/chemistry , Sulfhydryl Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...