Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Am J Pathol ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885924

ABSTRACT

Bifidobacterium bifidum strain BB1 causes a strain-specific enhancement in intestinal epithelial tight junction (TJ) barrier. Tumor necrosis factor (TNF)-α induces an increase in intestinal epithelial TJ permeability and promotes intestinal inflammation. The major purpose of this study was to delineate the protective effect of BB1 against the TNF-α-induced increase in intestinal TJ permeability and to unravel the intracellular mechanisms involved. Previously reported, TNF-α produces an increase in intestinal epithelial TJ permeability in Caco-2 monolayers and in mice. The addition of BB1 inhibited the TNF-α increase in Caco-2 intestinal TJ permeability and mouse intestinal permeability in a strain-specific manner. BB1 inhibited the TNF-α-induced increase in intestinal TJ permeability by interfering the with TNF-α-induced enterocyte NF-κB p50/p65 and myosin light chain kinase (MLCK) gene activation. The BB1 protective effect against the TNF-α-induced increase in intestinal permeability was mediated by toll-like receptor-2/toll-like receptor-6 heterodimer complex activation of peroxisome proliferator-activated receptor γ (PPAR-γ) and PPAR-γ pathway inhibition of TNF-α-induced IKK-α activation, which, in turn, resulted in a step-wise inhibition of NF-κB p50/p65, MLCK gene, MLCK kinase activity, and MLCK-induced opening of the TJ barrier. In conclusion, these studies unravel novel intracellular mechanisms of BB1 protection against the TNF-α-induced increase in intestinal TJ permeability. Our data show that BB1 protects against the TNF-α-induced increase in intestinal epithelial TJ permeability via a PPAR-γ-dependent inhibition of NF-κB p50/p65 and MLCK gene activation.

2.
Microbiol Resour Announc ; 13(4): e0067723, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38488370

ABSTRACT

We present the complete genome sequence of the probiotic strain Lactobacillus acidophilus ATCC 9224. The genome sequence provides a valuable resource for investigating the phylogenetic evolution of this lineage and conducting comparative genomics with other Lactobacillus strains and species.

3.
Sci Rep ; 13(1): 20226, 2023 11 18.
Article in English | MEDLINE | ID: mdl-37980374

ABSTRACT

The anaerobic region of the gastrointestinal (GI) tract has been replicated in the anaerobic chamber of a microbial fuel cell (MFC). Electroactive biomolecules released by the facultative anaerobes (Providencia rettgeri) under anoxic conditions have been studied for their potential role for redox balance. MALDI study reveals the presence of vitamin B9 (folate), 6-methylpterin, para-aminobenzoic acid (PABA) and pteroic acid called pterin pool. ATR-FTIR studies further confirm the presence of the aromatic ring and side chains of folate, 6-methylpterin and PABA groups. The photoluminescence spectra of the pool exhibit the maximum emission at 420, 425, 440, and 445 nm when excited by 310, 325, 350, and 365 nm wavelengths (day 20 sample) highlighting the presence of tunable bands. The cyclic voltammetric studies indicate the active participation of pterin pool molecules in the transfer of electrons with redox potentials at - 0.2 V and - 0.4 V for p-aminobenzoate and pterin groups, respectively. In addition, it is observed that under prolonged conditions of continuous oxidative stress (> 20 days), quinonoid tetrahydrofolate is formed, leading to temporary storage of charge. The results of the present study may potentially be useful in designing effective therapeutic strategies for the management of various GI diseases by promoting or blocking folate receptors.


Subject(s)
4-Aminobenzoic Acid , Folic Acid , Humans , Pterins , Bacteria , Intestines
4.
BMC Biotechnol ; 23(1): 12, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37127673

ABSTRACT

BACKGROUND: Dysmotility and postoperative ileus (POI) are frequent major clinical problems post-abdominal surgery. Erythropoietin (EPO) is a multifunctional tissue-protective cytokine that promotes recovery of the intestine in various injury models. While EPO receptors (EPOR) are present in vagal Schwann cells, the role of EPOR in POI recovery is unknown because of the lack of EPOR antagonists or Schwann-cell specific EPOR knockout animals. This study was designed to explore the effect of EPO via EPOR in vagal nerve Schwann cells in a mouse model of POI. RESULTS: The structural features of EPOR and its activation by EPO-mediated dimerization were understood using structural analysis. Later, using the Cre-loxP system, we developed a myelin protein zero (Mpz) promoter-driven knockout mouse model of Schwann cell EPOR (MpzCre-EPORflox/flox / Mpz-EPOR-KO) confirmed using PCR and qRT-PCR techniques. We then measured the intestinal transit time (ITT) at baseline and after induction of POI with and without EPO treatment. Although we have previously shown that EPO accelerates functional recovery in POI in wild type mice, EPO treatment did not improve functional recovery of ITT in POI of Mpz-EPOR-KO mice. CONCLUSIONS: To the best of our knowledge, this is the first pre-clinical study to demonstrate a novel mouse model of EPOR specific knock out on Schwan cells with an effect in the gut. We also showed novel beneficial effects of EPO through vagus nerve Schwann cell-EPOR in intestinal dysmotility. Our findings suggest that EPO-EPOR signaling in the vagus nerve after POI is important for the functional recovery of ITT.


Subject(s)
Erythropoietin , Receptors, Erythropoietin , Mice , Animals , Receptors, Erythropoietin/metabolism , Erythropoietin/metabolism , Schwann Cells/metabolism , Signal Transduction , Mice, Knockout , Gastrointestinal Motility
6.
bioRxiv ; 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33948596

ABSTRACT

Diarrhea occurs in 2-50% of cases of COVID-19 (∼8% is average across series). The diarrhea does not appear to account for the disease mortality and its contribution to the morbidity has not been defined, even though it is a component of Long Covid or post-infectious aspects of the disease. Even less is known about the pathophysiologic mechanism of the diarrhea. To begin to understand the pathophysiology of COVID-19 diarrhea, we exposed human enteroid monolayers obtained from five healthy subjects and made from duodenum, jejunum, and proximal colon to live SARS-CoV-2 and virus like particles (VLPs) made from exosomes expressing SARS-CoV-2 structural proteins (Spike, Nucleocapsid, Membrane and Envelope). Results: 1) Live virus was exposed apically for 90 min, then washed out and studied 2 and 5 days later. SARS-Cov-2 was taken up by enteroids and live virus was present in lysates and in the apical>>basolateral media of polarized enteroids 48 h after exposure. This is the first demonstration of basolateral appearance of live virus after apical exposure. High vRNA concentration was detected in cell lysates and in the apical and basolateral media up to 5 days after exposure. 2) Two days after viral exposure, cytokine measurements of media showed significantly increased levels of IL-6, IL-8 and MCP-1. 3) Two days after viral exposure, mRNA levels of ACE2, NHE3 and DRA were reduced but there was no change in mRNA of CFTR. NHE3 protein was also decreased. 4) Live viral studies were mimicked by some studies with VLP exposure for 48 h. VLPs with Spike-D614G bound to the enteroid apical surface and was taken up; this resulted in decreased mRNA levels of ACE2, NHE3, DRA and CFTR. 4) VLP effects were determined on active anion secretion measured with the Ussing chamber/voltage clamp technique. S-D614G acutely exposed to apical surface of human ileal enteroids did not alter the short-circuit current (Isc). However, VLPS-D614G exposure to enteroids that were pretreated for ∼24 h with IL-6 plus IL-8 induced a concentration dependent increase in Isc indicating stimulated anion secretion, that was delayed in onset by ∼8 min. The anion secretion was inhibited by apical exposure to a specific calcium activated Cl channel (CaCC) inhibitor (AO1) but not by a specific CFTR inhibitor (BP027); was inhibited by basolateral exposure to the K channel inhibit clortimazole; and was prevented by pretreatment with the calcium buffer BAPTA-AM. 5) The calcium dependence of the VLP-induced increase in Isc was studied in Caco-2/BBe cells stably expressing the genetically encoded Ca2+ sensor GCaMP6s. 24 h pretreatment with IL-6/IL-8 did not alter intracellular Ca2+. However, in IL-6/IL-8 pretreated cells, VLP S-D614G caused appearance of Ca 2+ waves and an overall increase in intracellular Ca 2+ with a delay of ∼10 min after VLP addition. We conclude that the diarrhea of COVID-19 appears to an example of a calcium dependent inflammatory diarrhea that involves both acutely stimulated Ca2+ dependent anion secretion (stimulated Isc) that involves CaCC and likely inhibition of neutral NaCl absorption (decreased NHE3 protein and mRNA and decreased DRA mRNA).

7.
ACS Pharmacol Transl Sci ; 4(1): 248-265, 2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33615177

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a pathogen of immense public health concern. Efforts to control the disease have only proven mildly successful, and the disease will likely continue to cause excessive fatalities until effective preventative measures (such as a vaccine) are developed. To develop disease management strategies, a better understanding of SARS-CoV-2 pathogenesis and population susceptibility to infection are needed. To this end, mathematical modeling can provide a robust in silico tool to understand COVID-19 pathophysiology and the in vivo dynamics of SARS-CoV-2. Guided by ACE2-tropism (ACE2 receptor dependency for infection) of the virus and by incorporating cellular-scale viral dynamics and innate and adaptive immune responses, we have developed a multiscale mechanistic model for simulating the time-dependent evolution of viral load distribution in susceptible organs of the body (respiratory tract, gut, liver, spleen, heart, kidneys, and brain). Following parameter quantification with in vivo and clinical data, we used the model to simulate viral load progression in a virtual patient with varying degrees of compromised immune status. Further, we ranked model parameters through sensitivity analysis for their significance in governing clearance of viral load to understand the effects of physiological factors and underlying conditions on viral load dynamics. Antiviral drug therapy, interferon therapy, and their combination were simulated to study the effects on viral load kinetics of SARS-CoV-2. The model revealed the dominant role of innate immunity (specifically interferons and resident macrophages) in controlling viral load, and the importance of timing when initiating therapy after infection.

8.
Am J Pathol ; 191(5): 872-884, 2021 05.
Article in English | MEDLINE | ID: mdl-33607043

ABSTRACT

Defective intestinal tight junction (TJ) barrier is an important pathogenic factor of inflammatory bowel disease. To date, no effective therapies that specifically target the intestinal TJ barrier are available. The purpose of this study was to identify probiotic bacterial species or strains that induce a rapid and sustained enhancement of intestinal TJ barrier and protect against the development of intestinal inflammation by targeting the TJ barrier. After high-throughput screening of >20 Lactobacillus and other probiotic bacterial species or strains, a specific strain of Lactobacillus acidophilus, referred to as LA1, uniquely produced a marked enhancement of the intestinal TJ barrier. LA1 attached to the apical membrane surface of intestinal epithelial cells in a Toll-like receptor (TLR)-2-dependent manner and caused a rapid increase in enterocyte TLR-2 membrane expression and TLR-2/TLR-1 and TLR-2/TLR-6 hetero-complex-dependent enhancement in intestinal TJ barrier function. Oral administration of LA1 caused a rapid enhancement in mouse intestinal TJ barrier, protected against a dextran sodium sulfate (DSS) increase in intestinal permeability, and prevented the DSS-induced colitis in a TLR-2- and intestinal TJ barrier-dependent manner. In conclusion, we report for the first time that a specific strain of LA causes a strain-specific enhancement of intestinal TJ barrier through a novel mechanism that involves the TLR-2 receptor complex and protects against the DSS-induced colitis by targeting the intestinal TJ barrier.


Subject(s)
Colitis/prevention & control , Inflammation/prevention & control , Lactobacillus acidophilus/physiology , Probiotics , Toll-Like Receptor 2/metabolism , Animals , Colitis/chemically induced , Colitis/microbiology , Colitis/pathology , Dextran Sulfate/adverse effects , Epithelial Cells/pathology , Intestines/drug effects , Intestines/pathology , Mice , Mice, Inbred C57BL , Permeability/drug effects , Tight Junctions/drug effects , Tight Junctions/pathology , Toll-Like Receptor 2/genetics
9.
J Cell Physiol ; 236(2): 1131-1147, 2021 02.
Article in English | MEDLINE | ID: mdl-32643158

ABSTRACT

Since the outbreak of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) in December 2019 in China, there has been an upsurge in the number of deaths and infected individuals throughout the world, thereby leading to the World Health Organization declaration of a pandemic. Since no specific therapy is currently available for the same, the present study was aimed to explore the SARS-CoV-2 genome for the identification of immunogenic regions using immunoinformatics approach. A series of computational tools were applied in a systematic way to identify the epitopes that could be utilized in vaccine development. The screened-out epitopes were passed through several immune filters, such as promiscuousity, conservancy, antigenicity, nonallergenicity, population coverage, nonhomologous to human proteins, and affinity with human leukocyte antigen alleles, to screen out the best possible ones. Further, a construct comprising 11 CD4, 12 CD8, 3 B cell, and 3 interferon-γ epitopes, along with an adjuvant ß-defensin, was designed in silico, resulting in the formation of a multiepitope vaccine. The in silico immune simulation and population coverage analysis of the vaccine sequence showed its capacity to elicit cellular, humoral, and innate immune cells and to cover up a worldwide population of more than 97%. Further, the interaction analysis of the vaccine construct with Toll-like receptor 3 (immune receptor) was carried out by docking and dynamics simulations, revealing high affinity, constancy, and pliability between the two. The overall findings suggest that the vaccine may be highly effective, and is therefore required to be tested in the lab settings to evaluate its efficacy.


Subject(s)
COVID-19 Vaccines/immunology , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Genome, Viral , Interferon-gamma/immunology , SARS-CoV-2/genetics , Antigens, Viral , COVID-19/prevention & control , Cloning, Molecular , Epitopes, B-Lymphocyte/genetics , Epitopes, T-Lymphocyte/genetics , Humans , Models, Biological , Models, Molecular , Molecular Dynamics Simulation , Phylogeny , Protein Conformation , Protein Processing, Post-Translational , Vaccines, Subunit/immunology , Viral Proteins/immunology
10.
World J Gastroenterol ; 26(46): 7287-7298, 2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33362384

ABSTRACT

Artificial intelligence (AI) is a combination of different technologies that enable machines to sense, comprehend, and learn with human-like levels of intelligence. AI technology will eventually enhance human capability, provide machines genuine autonomy, and reduce errors, and increase productivity and efficiency. AI seems promising, and the field is full of invention, novel applications; however, the limitation of machine learning suggests a cautious optimism as the right strategy. AI is also becoming incorporated into medicine to improve patient care by speeding up processes and achieving greater accuracy for optimal patient care. AI using deep learning technology has been used to identify, differentiate catalog images in several medical fields including gastrointestinal endoscopy. The gastrointestinal endoscopy field involves endoscopic diagnoses and prognostication of various digestive diseases using image analysis with the help of various gastrointestinal endoscopic device systems. AI-based endoscopic systems can reliably detect and provide crucial information on gastrointestinal pathology based on their training and validation. These systems can make gastroenterology practice easier, faster, more reliable, and reduce inter-observer variability in the coming years. However, the thought that these systems will replace human decision making replace gastrointestinal endoscopists does not seem plausible in the near future. In this review, we discuss AI and associated various technological terminologies, evolving role in gastrointestinal endoscopy, and future possibilities.


Subject(s)
Artificial Intelligence , Gastroenterology , Endoscopy, Gastrointestinal , Humans , Image Processing, Computer-Assisted , Machine Learning
11.
medRxiv ; 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33173913

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a pathogen of immense public health concern. Efforts to control the disease have only proven mildly successful, and the disease will likely continue to cause excessive fatalities until effective preventative measures (such as a vaccine) are developed. To develop disease management strategies, a better understanding of SARS-CoV-2 pathogenesis and population susceptibility to infection are needed. To this end, physiologically-relevant mathematical modeling can provide a robust in silico tool to understand COVID-19 pathophysiology and the in vivo dynamics of SARS-CoV-2. Guided by ACE2-tropism (ACE2 receptor dependency for infection) of the virus, and by incorporating cellular-scale viral dynamics and innate and adaptive immune responses, we have developed a multiscale mechanistic model for simulating the time-dependent evolution of viral load distribution in susceptible organs of the body (respiratory tract, gut, liver, spleen, heart, kidneys, and brain). Following calibration with in vivo and clinical data, we used the model to simulate viral load progression in a virtual patient with varying degrees of compromised immune status. Further, we conducted global sensitivity analysis of model parameters and ranked them for their significance in governing clearance of viral load to understand the effects of physiological factors and underlying conditions on viral load dynamics. Antiviral drug therapy, interferon therapy, and their combination was simulated to study the effects on viral load kinetics of SARS-CoV-2. The model revealed the dominant role of innate immunity (specifically interferons and resident macrophages) in controlling viral load, and the importance of timing when initiating therapy following infection.

13.
Gastroenterology ; 159(4): 1375-1389, 2020 10.
Article in English | MEDLINE | ID: mdl-32569770

ABSTRACT

BACKGROUND & AIMS: Defects in the epithelial tight junction (TJ) barrier contribute to development of intestinal inflammation associated with diseases. Interleukin 1 beta (IL1B) increases intestinal permeability in mice. We investigated microRNAs that are regulated by IL1B and their effects on expression of TJ proteins and intestinal permeability. METHODS: We used Targetscan to identify microRNAs that would bind the 3' untranslated region (3'UTR) of occludin mRNA; regions that interacted with microRNAs were predicted using the V-fold server and Assemble2, and 3-dimensional models were created using UCSF Chimera linked with Assemble2. Caco-2 cells were transfected with vectors that express microRNAs, analyzed by immunoblots and real-time polymerase chain reaction (PCR), and grown as monolayers; permeability in response to IL1B was assessed with the marker inulin. Male C57BL/6 mice were given intraperitoneal injections of IL1B and intestinal recycling perfusion was measured; some mice were given dextran sodium sulfate to induce colitis and/or gavage with an antagonist to MIR200C-3p (antagomiR-200C) or the nonspecific antagomiR (control). Intestinal tissues were collected from mice and analyzed by histology and real-time PCR; enterocytes were isolated by laser capture microdissection. We also analyzed colon tissues and organoids from patients with and without ulcerative colitis. RESULTS: Incubation of Caco-2 monolayers with IL1B increased TJ permeability and reduced levels of occludin protein and mRNA without affecting the expression of other transmembrane TJ proteins. Targetscan identified MIR122, MIR200B-3p, and MIR200C-3p, as miRNAs that might bind to the occludin 3'UTR. MIR200C-3p was rapidly increased in Caco-2 cells incubated with IL1B; the antagomiR-200c prevented the IL1B-induced decrease in occludin mRNA and protein and reduced TJ permeability. Administration of IL1B to mice increased small intestinal TJ permeability, compared with mice given vehicle; enterocytes isolated from mice given IL1B had increased expression of MIR200C-3p and decreased levels of occludin messenger RNA (mRNA) and protein. Intestinal tissues from mice with colitis had increased levels of IL1B mRNA and MIR200C-3p and decreased levels of occludin mRNA; gavage of mice with antagomiR-200C reduced levels of MIR200C-3p and prevented the decrease in occludin mRNA and the increase in colonic permeability. Colon tissues and organoids from patients with ulcerative colitis had increased levels of IL1B mRNA and MIR200C-3p compared with healthy controls. Using 3-dimensional molecular modeling and mutational analyses, we identified the nucleotide bases in the occluding mRNA 3'UTR that interact with MIR200C-3p. CONCLUSIONS: Intestine tissues from patients with ulcerative colitis and mice with colitis have increased levels of IL1B mRNA and MIR200C-3p, which reduces expression of occludin by enterocytes and thereby increases TJ permeability. Three-dimensional modeling of the interaction between MIR200C-3p and the occludin mRNA 3'UTR identified sites of interaction. The antagomiR-200C prevents the decrease in occludin in enterocytes and intestine tissues of mice with colitis, maintaining the TJ barrier.


Subject(s)
Colitis, Ulcerative/pathology , Interleukin-1beta/metabolism , MicroRNAs/metabolism , Occludin/metabolism , Tight Junctions/metabolism , Animals , Caco-2 Cells , Cell Culture Techniques , Colitis, Ulcerative/etiology , Colitis, Ulcerative/metabolism , Enterocytes , Humans , Intestinal Absorption/physiology , Male , Mice , Mice, Inbred C57BL , Occludin/genetics , Permeability , RNA, Messenger/metabolism , Up-Regulation
14.
Curr Top Med Chem ; 20(5): 367-376, 2020.
Article in English | MEDLINE | ID: mdl-31893993

ABSTRACT

Pancreatic Ductal Adenocarcinoma (PDAC) is regarded as one of the most lethal cancer types for its challenges associated with early diagnosis and resistance to standard chemotherapeutic agents, thereby leading to a poor five-year survival rate. The complexity of the disease calls for a multidisciplinary approach to better manage the disease and improve the status quo in PDAC diagnosis, prognosis, and treatment. To this end, the application of quantitative tools can help improve the understanding of disease mechanisms, develop biomarkers for early diagnosis, and design patient-specific treatment strategies to improve therapeutic outcomes. However, such approaches have only been minimally applied towards the investigation of PDAC, and we review the current status of mathematical modeling works in this field.


Subject(s)
Carcinoma, Pancreatic Ductal/diagnosis , Models, Statistical , Pancreatic Neoplasms/diagnosis , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carcinoma, Pancreatic Ductal/drug therapy , Cell Proliferation/drug effects , Humans , Pancreatic Neoplasms/drug therapy
15.
Genes (Basel) ; 10(10)2019 09 25.
Article in English | MEDLINE | ID: mdl-31557962

ABSTRACT

Pancreatic cancer is one of the most aggressive malignancies, accounting for more than 45,750 deaths annually in the U.S. alone. The aggressive nature and late diagnosis of pancreatic cancer, coupled with the limitations of existing chemotherapy, present the pressing need for the development of novel therapeutic strategies. Recent reports have demonstrated a critical role of microRNAs (miRNAs) in the initiation, progression, and metastasis of cancer. Furthermore, aberrant expressions of miRNAs have often been associated with the cause and consequence of pancreatic cancer, emphasizing the possible use of miRNAs in the effective management of pancreatic cancer patients. In this review, we provide a brief overview of miRNA biogenesis and its role in fundamental cellular process and miRNA studies in pancreatic cancer patients and animal models. Subsequent sections narrate the role of miRNA in, (i) cell cycle and proliferation; (ii) apoptosis; (iii) invasions and metastasis; and (iv) various cellular signaling pathways. We also describe the role of miRNA's in pancreatic cancer; (i) diagnosis; (ii) prognosis and (iii) therapeutic intervention. Conclusion section describes the gist of review with future directions.


Subject(s)
MicroRNAs/genetics , Pancreatic Neoplasms/genetics , RNAi Therapeutics/methods , Animals , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Humans , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/therapy
16.
Am J Pathol ; 189(4): 797-812, 2019 04.
Article in English | MEDLINE | ID: mdl-30711488

ABSTRACT

Lipopolysaccharides (LPSs) are a major component of Gram-negative bacterial cell wall and play an important role in promoting intestinal inflammatory responses. Recent studies have shown that physiologically relevant concentrations of LPS (0 to 2000 pg/mL) cause an increase in intestinal epithelial tight junction (TJ) permeability without causing cell death. However, the intracellular pathways and the mechanisms that mediate LPS-induced increase in intestinal TJ permeability remain unclear. The aim was to delineate the intracellular pathways that mediate the LPS-induced increase in intestinal permeability using in vitro and in vivo intestinal epithelial models. LPS-induced increase in intestinal epithelial TJ permeability was preceded by an activation of transforming growth factor-ß-activating kinase-1 (TAK-1) and canonical NF-κB (p50/p65) pathways. The siRNA silencing of TAK-1 inhibited the activation of NF-κB p50/p65. The siRNA silencing of TAK-1 and p65/p50 subunit inhibited the LPS-induced increase in intestinal TJ permeability and the increase in myosin light chain kinase (MLCK) expression, confirming the regulatory role of TAK-1 and NF-κB p65/p50 in up-regulating MLCK expression and the subsequent increase in TJ permeability. The data also showed that toll-like receptor (TLR)-4/myeloid differentiation primary response (MyD)88 pathway was crucial upstream regulator of TAK-1 and NF-κB p50/p65 activation. In conclusion, activation of TAK-1 by the TLR-4/MyD88 signal transduction pathway and MLCK by NF-κB p65/p50 regulates the LPS-induced increase in intestinal epithelial TJ permeability.


Subject(s)
Calcium-Binding Proteins/metabolism , Cell Membrane Permeability/drug effects , I-kappa B Kinase/metabolism , Intestinal Mucosa/physiology , Lipopolysaccharides/pharmacology , MAP Kinase Kinase Kinases/metabolism , Myosin-Light-Chain Kinase/metabolism , Animals , Caco-2 Cells , Calcium-Binding Proteins/genetics , Female , Gene Expression Regulation/drug effects , Humans , I-kappa B Kinase/genetics , Intestinal Mucosa/drug effects , MAP Kinase Kinase Kinases/genetics , Male , Mice, Inbred C57BL , Myosin-Light-Chain Kinase/genetics , NF-kappa B/genetics , NF-kappa B/metabolism , Signal Transduction , Tight Junctions/drug effects , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
17.
Am J Physiol Gastrointest Liver Physiol ; 316(2): G278-G290, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30543452

ABSTRACT

Matrix metalloproteinase-9 (MMP-9) has been implicated as being an important pathogenic factor in inflammatory bowel disease (IBD). MMP-9 is markedly elevated in intestinal tissue of patients with IBD, and IBD patients have a defective intestinal tight-junction (TJ) barrier manifested by an increase in intestinal permeability. The loss of intestinal epithelial barrier function is an important contributing factor in the development and prolongation of intestinal inflammation; however, the role of MMP-9 in intestinal barrier function remains unclear. The purpose of this study was to investigate the effect of MMP-9 on the intestinal epithelial TJ barrier and to delineate the intracellular mechanisms involved by using in vitro (filter-grown Caco-2 monolayers) and in vivo (mouse small intestine recycling perfusion) systems. MMP-9 caused a time- and dose-dependent increase in Caco-2 TJ permeability. MMP-9 also caused an increase in myosin light-chain kinase (MLCK) gene activity, protein expression, and enzymatic activity. The pharmacological MLCK inhibition and siRNA-induced knockdown of MLCK inhibited the MMP-9-induced increase in Caco-2 TJ permeability. MMP-9 caused a rapid activation of the p38 kinase signaling pathway and inhibition of p38 kinase activity prevented the MMP-9-induced increase in MLCK gene activity and the increase in Caco-2 TJ permeability. MMP-9 also caused an increase in mouse intestinal permeability in vivo, which was accompanied by an increase in MLCK expression. The MMP-9-induced increase in mouse intestinal permeability was inhibited in MLCK-deficient mice. These data show for the first time that the MMP-9-induced increase in intestinal TJ permeability in vitro and in vivo was mediated by the p38 kinase signal transduction pathway upregulation of MLCK gene activity and that therapeutic targeting of these pathways can prevent the MMP-9-induced increase in intestinal TJ permeability. NEW & NOTEWORTHY MMP-9 is highly elevated in patients with IBD. IBD patients have compromised intestinal TJ barrier function manifested by an increase in intestinal permeability and intestinal inflammation. This study shows that MMP-9, at clinically achievable concentrations, causes an increase in intestinal TJ permeability in vitro and in vivo. In addition, a MMP-9-induced increase in intestinal TJ permeability was mediated by an increase in MLCK gene and protein expression via the p38 kinase pathway.


Subject(s)
Cell Membrane Permeability/genetics , MAP Kinase Signaling System/genetics , Matrix Metalloproteinase 9/metabolism , Myosin-Light-Chain Kinase/metabolism , Caco-2 Cells , Epithelial Cells , Humans , Intestines/physiology , Matrix Metalloproteinase 9/genetics , Permeability , Tight Junctions/genetics , Tight Junctions/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
18.
Curr Top Med Chem ; 18(22): 1987-1997, 2018.
Article in English | MEDLINE | ID: mdl-30499407

ABSTRACT

Malaria continues to impinge heavily on mankind, with five continents still under its clasp. Widespread and rapid emergence of drug resistance in the Plasmodium parasite to current therapies accentuate the quest for novel drug targets and antimalarial compounds. Plasmodium parasites, maintain a non-photosynthetic relict organelle known as Apicoplast. Among the four major pathways of Apicoplast, biosynthesis of isoprenoids via Methylerythritol phosphate (MEP) pathway is the only indispensable function of Apicoplast that occurs during different stages of the malaria parasite. Moreover, the human host lacks MEP pathway. MEP pathway is a validated repertoire of novel antimalarial and antibacterial drug targets. Fosmidomycin, an efficacious antimalarial compound against IspC enzyme of MEP pathway is already in clinical trials as a combination drugs. Exploitation of other enzymes of MEP pathway would provide a much-needed impetus to the antimalarial drug discovery programs for the elimination of malaria. We outline the cardinal features of the MEP pathway enzymes and progress made towards the characterization of new inhibitors.


Subject(s)
Apicoplasts/metabolism , Erythritol/analogs & derivatives , Plasmodium falciparum/metabolism , Sugar Phosphates/metabolism , Antimalarials/chemistry , Antimalarials/pharmacology , Apicoplasts/drug effects , Erythritol/antagonists & inhibitors , Erythritol/chemistry , Erythritol/metabolism , Humans , Phosphotransferases/antagonists & inhibitors , Phosphotransferases/metabolism , Plasmodium falciparum/drug effects , Sugar Phosphates/antagonists & inhibitors , Sugar Phosphates/chemistry , Terpenes/chemistry , Terpenes/metabolism , Transferases/antagonists & inhibitors , Transferases/metabolism
19.
Med Res Rev ; 38(5): 1511-1535, 2018 09.
Article in English | MEDLINE | ID: mdl-29372568

ABSTRACT

Over time, several exciting advances have been made in the treatment and prevention of malaria; however, this devastating disease continues to be a major global health problem and affects millions of people every year. Notably, the paucity of new efficient drug molecules and the inevitable drug resistance of the malaria parasite, Plasmodium falciparum, against frontline therapeutics are the foremost struggles facing malaria eradication initiatives. According to the malaria eradication agenda, the discovery of new chemical entities that can destroy the parasite at the liver stage, the asexual blood stage, the gametocyte stage, and the insect ookinete stage of the parasite life cycle (i.e., compounds exhibiting multistage activity) are in high demand, preferably with novel and multiple modes of action. Phenotypic screening of chemical libraries against the malaria parasite is certainly a crucial step toward overcoming these crises. In the last few years, various research groups, including industrial research laboratories, have performed large-scale phenotypic screenings that have identified a wealth of chemical entities active against multiple life stages of the malaria parasite. Vital scientific and technological developments have led to the discovery of multistage inhibitors of the malaria parasite; these compounds, considered highly valuable starting points for subsequent drug discovery and eradication of malaria, are reviewed.


Subject(s)
Antimalarials/therapeutic use , Disease Eradication , Life Cycle Stages , Malaria/drug therapy , Malaria/parasitology , Parasites/growth & development , Animals , Antimalarials/chemistry , Antimalarials/pharmacology , Chemoprevention , Humans , Life Cycle Stages/drug effects , Malaria/prevention & control , Parasites/drug effects
20.
Am J Pathol ; 187(12): 2698-2710, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29157665

ABSTRACT

Lipopolysaccharides (LPSs) are a major component of the Gram-negative bacterial cell wall and play an important role in mediating intestinal inflammatory responses in inflammatory bowel disease. Although recent studies suggested that physiologically relevant concentrations of LPS (0 to 1 ng/mL) cause an increase in intestinal epithelial tight junction (TJ) permeability, the mechanisms that mediate an LPS-induced increase in intestinal TJ permeability remain unclear. Herein, we show that myosin light chain kinase (MLCK) plays a central role in the LPS-induced increase in TJ permeability. Filter-grown Caco-2 intestinal epithelial monolayers and C57BL/6 mice were used as an in vitro and in vivo intestinal epithelial model system, respectively. LPS caused a dose- and time-dependent increase in MLCK expression and kinase activity in Caco-2 monolayers. The pharmacologic MLCK inhibition and siRNA-induced knock-down of MLCK inhibited the LPS-induced increase in Caco-2 TJ permeability. The LPS increase in TJ permeability was mediated by toll-like receptor 4 (TLR-4)/MyD88 signal-transduction pathway up-regulation of MLCK expression. The LPS-induced increase in mouse intestinal permeability also required an increase in MLCK expression. The LPS-induced increase in intestinal permeability was inhibited in MLCK-/- and TLR-4-/- mice. These data show, for the first time, that the LPS-induced increase in intestinal permeability was mediated by TLR-4/MyD88 signal-transduction pathway up-regulation of MLCK. Therapeutic targeting of these pathways can prevent an LPS-induced increase in intestinal permeability.


Subject(s)
Intestinal Mucosa/metabolism , Lipopolysaccharides/toxicity , Myeloid Differentiation Factor 88/metabolism , Myosin-Light-Chain Kinase/metabolism , Tight Junctions/metabolism , Toll-Like Receptor 4/metabolism , Animals , Caco-2 Cells , Humans , Inflammation/metabolism , Intestinal Mucosa/drug effects , Mice , Mice, Inbred C57BL , Permeability/drug effects , Signal Transduction/drug effects , Signal Transduction/physiology , Tight Junctions/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...