Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IET Syst Biol ; 14(4): 211-216, 2020 08.
Article in English | MEDLINE | ID: mdl-32737279

ABSTRACT

A drug-drug interaction or drug synergy is extensively utilised for cancer treatment. However, prediction of drug-drug interaction is defined as an ill-posed problem, because manual testing is only implementable on small group of drugs. Predicting the drug-drug interaction score has been a popular research topic recently. Recently many machine learning models have proposed in the literature to predict the drug-drug interaction score efficiently. However, these models suffer from the over-fitting issue. Therefore, these models are not so-effective for predicting the drug-drug interaction score. In this work, an integrated convolutional mixture density recurrent neural network is proposed and implemented. The proposed model integrates convolutional neural networks, recurrent neural networks and mixture density networks. Extensive comparative analysis reveals that the proposed model significantly outperforms the competitive models.


Subject(s)
Computational Biology/methods , Deep Learning , Drug Interactions
2.
J Healthc Eng ; 2017: 9674712, 2017.
Article in English | MEDLINE | ID: mdl-29118966

ABSTRACT

The motion generated at the capturing time of electro-encephalography (EEG) signal leads to the artifacts, which may reduce the quality of obtained information. Existing artifact removal methods use canonical correlation analysis (CCA) for removing artifacts along with ensemble empirical mode decomposition (EEMD) and wavelet transform (WT). A new approach is proposed to further analyse and improve the filtering performance and reduce the filter computation time under highly noisy environment. This new approach of CCA is based on Gaussian elimination method which is used for calculating the correlation coefficients using backslash operation and is designed for EEG signal motion artifact removal. Gaussian elimination is used for solving linear equation to calculate Eigen values which reduces the computation cost of the CCA method. This novel proposed method is tested against currently available artifact removal techniques using EEMD-CCA and wavelet transform. The performance is tested on synthetic and real EEG signal data. The proposed artifact removal technique is evaluated using efficiency matrices such as del signal to noise ratio (DSNR), lambda (λ), root mean square error (RMSE), elapsed time, and ROC parameters. The results indicate suitablity of the proposed algorithm for use as a supplement to algorithms currently in use.


Subject(s)
Electroencephalography/methods , Normal Distribution , Signal Processing, Computer-Assisted , Algorithms , Artifacts , Humans , Signal-To-Noise Ratio , Wavelet Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...