Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Life Sci ; 81(1): 105, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413417

ABSTRACT

Administration of multiple subanesthetic doses of ketamine increases the duration of antidepressant effects relative to a single ketamine dose, but the mechanisms mediating this sustained effect are unclear. Here, we demonstrate that ketamine's rapid and sustained effects on affective behavior are mediated by separate and temporally distinct mechanisms. The rapid effects of a single dose of ketamine result from increased activity of immature neurons in the hippocampal dentate gyrus without an increase in neurogenesis. Treatment with six doses of ketamine over two weeks doubled the duration of behavioral effects after the final ketamine injection. However, unlike ketamine's rapid effects, this more sustained behavioral effect did not correlate with increased immature neuron activity but instead correlated with increased numbers of calretinin-positive and doublecortin-positive immature neurons. This increase in neurogenesis was associated with a decrease in bone morphogenetic protein (BMP) signaling, a known inhibitor of neurogenesis. Injection of a BMP4-expressing lentivirus into the dentate gyrus maintained BMP signaling in the niche and blocked the sustained - but not the rapid - behavioral effects of ketamine, indicating that decreased BMP signaling is necessary for ketamine's sustained effects. Thus, although the rapid effects of ketamine result from increased activity of immature neurons in the dentate gyrus without requiring an increase in neurogenesis, ketamine's sustained effects require a decrease in BMP signaling and increased neurogenesis along with increased neuron activity. Understanding ketamine's dual mechanisms of action should help with the development of new rapid-acting therapies that also have safe, reliable, and sustained effects.


Subject(s)
Ketamine , Ketamine/pharmacology , Ketamine/metabolism , Ketamine/therapeutic use , Antidepressive Agents/pharmacology , Depression/drug therapy , Neurons/metabolism , Signal Transduction
2.
eNeuro ; 10(1)2023 01.
Article in English | MEDLINE | ID: mdl-36596594

ABSTRACT

Inbred mice (C57Bl/6) display wide variability in performance on hippocampal-dependent cognitive tasks. Examination of microdissected dentate gyrus (DG) after cognitive testing showed a highly significant negative correlation between levels of bone morphogenetic protein (BMP) signaling and recognition memory. Cognitive performance decline during the aging process, and the degree of cognitive decline is strongly correlated with aging-related increases in BMP signaling. Further, cognitive performance was impaired when the BMP inhibitor, noggin, was knocked down in the DG. Infusion of noggin into the lateral ventricles enhanced DG-dependent cognition while BMP4 infusion led to significant impairments. Embryonic overexpression of noggin resulted in lifelong enhancement of recognition and spatial memory while overexpression of BMP4 resulted in lifelong impairment, substantiating the importance of differences in BMP signaling in wild-type mice. These findings indicate that performance in DG-dependent cognitive tasks is largely determined by differences in levels BMP signaling in the dentate gyrus.


Subject(s)
Bone Morphogenetic Proteins , Hippocampus , Mice , Animals , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/pharmacology , Hippocampus/metabolism , Aging , Cognition
3.
Nat Commun ; 13(1): 2650, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35551462

ABSTRACT

Ketamine treatment decreases depressive symptoms within hours, but the mechanisms mediating these rapid antidepressant effects are unclear. Here, we demonstrate that activity of adult-born immature granule neurons (ABINs) in the mouse hippocampal dentate gyrus is both necessary and sufficient for the rapid antidepressant effects of ketamine. Ketamine treatment activates ABINs in parallel with its behavioral effects in both stressed and unstressed mice. Chemogenetic inhibition of ABIN activity blocks the antidepressant effects of ketamine, indicating that this activity is necessary for the behavioral effects. Conversely, chemogenetic activation of ABINs without any change in neuron numbers mimics both the cellular and the behavioral effects of ketamine, indicating that increased activity of ABINs is sufficient for rapid antidepressant effects. These findings thus identify a specific cell population that mediates the antidepressant actions of ketamine, indicating that ABINs can potentially be targeted to limit ketamine's side effects while preserving its therapeutic efficacy.


Subject(s)
Ketamine , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/drug therapy , Hippocampus , Ketamine/pharmacology , Ketamine/therapeutic use , Mice , Neurons
4.
Eur J Neurosci ; 55(4): 989-1001, 2022 02.
Article in English | MEDLINE | ID: mdl-35060216

ABSTRACT

Previous studies show that the main cannabinoid receptor in the brain-cannabinoid type 1 receptor (CB1R)-is required for establishment of axonal projections in developing neurons but questions remain regarding the cellular and molecular mechanisms, especially in neurons developing in their native environment. We assessed the effects of CB1R signalling on growth cone filopodia and axonal projections of retinal ganglion cells (RGCs) in whole mount brains from Xenopus laevis tadpoles. Our results indicate that growth cones of RGC axons in brains from tadpoles exposed to a CB1R agonist had fewer filopodial protrusions, whereas growth cones from tadpoles exposed to a CB1R inverse agonist had more filopodia than growth cones of RGC axons in whole brains from control tadpoles. However, application of both the CB1R agonist and inverse agonist resulted in RGC axons that were overly dispersed and undulatory in the optic tract in situ. In addition, expression of a mutant for cadherin adhesive factor, ß-catenin, that disrupts its binding to α-catenin, and application of an inhibitor for actin regulator non-muscle Myosin II, phenocopied the effects of the CB1R agonist and inverse agonist on growth cone filopodia, respectively. These findings suggest that both destablization and stabilization of growth cone filopodia are required for RGC axonal fasciculation/defasciculation in the optic tract and that CB1R regulates growth cone filopodia and axon dispersion of RGCs by oppositely modulating ß-catenin adhesive and Myosin II actin regulatory functions. This study extends and confirms our understanding of cannabinoid mechanisms in sculpting developing neuronal circuits in vivo.


Subject(s)
Cannabinoids , Optic Tract , Actins , Animals , Axons/physiology , Cannabinoids/metabolism , Growth Cones/metabolism , Larva/metabolism , Optic Tract/metabolism , Pseudopodia/metabolism , Receptors, Cannabinoid/metabolism , Retinal Ganglion Cells , Xenopus laevis/metabolism , beta Catenin/metabolism
5.
Cell Mol Life Sci ; 79(1): 31, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34936033

ABSTRACT

The benefits of current treatments for depression are limited by low response rates, delayed therapeutic effects, and multiple side effects. Antidepressants affect a variety of neurotransmitter systems in different areas of the brain, and the mechanisms underlying their convergent effects on behavior have been unclear. Here we identify hippocampal bone morphogenetic protein (BMP) signaling as a common downstream pathway that mediates the behavioral effects of five different antidepressant classes (fluoxetine, bupropion, duloxetine, vilazodone, trazodone) and of electroconvulsive therapy. All of these therapies decrease BMP signaling and enhance neurogenesis in the hippocampus. Preventing the decrease in BMP signaling blocks the effect of antidepressant treatment on behavioral phenotypes. Further, inhibition of BMP signaling in hippocampal newborn neurons is sufficient to produce an antidepressant effect, while chemogenetic silencing of newborn neurons prevents the antidepressant effect. Thus, inhibition of hippocampal BMP signaling is both necessary and sufficient to mediate the effects of multiple classes of antidepressants.


Subject(s)
Antidepressive Agents/pharmacology , Bone Morphogenetic Proteins/metabolism , Hippocampus/metabolism , Signal Transduction , Aging/pathology , Animals , Anti-Anxiety Agents/pharmacology , Behavior, Animal/drug effects , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Duloxetine Hydrochloride/pharmacology , Electroconvulsive Therapy , Fluoxetine/pharmacology , Ganglia, Spinal/drug effects , Ganglia, Spinal/pathology , Hippocampus/drug effects , Mice, Inbred C57BL , Mice, Transgenic , Neurogenesis/drug effects , Signal Transduction/drug effects , Stress, Psychological/complications , Trazodone/pharmacology , Vilazodone Hydrochloride/pharmacology
6.
Cancer Discov ; 10(9): 1388-1409, 2020 09.
Article in English | MEDLINE | ID: mdl-32444465

ABSTRACT

Splicing alterations are common in diseases such as cancer, where mutations in splicing factor genes are frequently responsible for aberrant splicing. Here we present an alternative mechanism for splicing regulation in T-cell acute lymphoblastic leukemia (T-ALL) that involves posttranslational stabilization of the splicing machinery via deubiquitination. We demonstrate there are extensive exon skipping changes in disease, affecting proteasomal subunits, cell-cycle regulators, and the RNA machinery. We present that the serine/arginine-rich splicing factors (SRSF), controlling exon skipping, are critical for leukemia cell survival. The ubiquitin-specific peptidase 7 (USP7) regulates SRSF6 protein levels via active deubiquitination, and USP7 inhibition alters the exon skipping pattern and blocks T-ALL growth. The splicing inhibitor H3B-8800 affects splicing of proteasomal transcripts and proteasome activity and acts synergistically with proteasome inhibitors in inhibiting T-ALL growth. Our study provides the proof-of-principle for regulation of splicing factors via deubiquitination and suggests new therapeutic modalities in T-ALL. SIGNIFICANCE: Our study provides a new proof-of-principle for posttranslational regulation of splicing factors independently of mutations in aggressive T-cell leukemia. It further suggests a new drug combination of splicing and proteasomal inhibitors, a concept that might apply to other diseases with or without mutations affecting the splicing machinery.This article is highlighted in the In This Issue feature, p. 1241.


Subject(s)
Alternative Splicing/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Phosphoproteins/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Serine-Arginine Splicing Factors/metabolism , Ubiquitin-Specific Peptidase 7/metabolism , Alternative Splicing/drug effects , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Drug Synergism , Exons/genetics , Humans , Jurkat Cells , Male , Mice , Piperazines/pharmacology , Piperazines/therapeutic use , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Proof of Concept Study , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Ubiquitination , Xenograft Model Antitumor Assays
7.
Curr Opin Cell Biol ; 58: 85-94, 2019 06.
Article in English | MEDLINE | ID: mdl-30897496

ABSTRACT

Ubiquitination is a versatile and tightly regulated post-translational protein modification with many distinct outcomes affecting protein stability, localization, interactions, and activity. Ubiquitin chain linkages anchored on substrates can be further modified by additional post-translational modifications, including phosphorylation and SUMOylation. Deubiquitinases (DUBs) reverse these ubiquitin marks with matched levels of precision. Over hundred known DUBs regulate a wide variety of cellular events. In this review, we focus on ubiquitin-specific protease 7 (USP7, also known as herpesvirus-associated ubiquitin-specific protease, or HAUSP) as one of the best studied, disease-associated DUBs. By highlighting the functions of USP7, particularly in the nucleus, and the emergence of the newest generation of USP7 inhibitors, we illustrate the importance of individual DUBs in the nucleus, and the therapeutic prospects of DUB targeting in human disease.


Subject(s)
Ubiquitin-Specific Peptidase 7/metabolism , Animals , Apoptosis , Humans , Neoplasms/metabolism , Neoplasms/pathology , Phosphorylation , Proteolysis , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors , Ubiquitination
8.
Clin Cancer Res ; 25(1): 222-239, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30224337

ABSTRACT

PURPOSE: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease, affecting children and adults. Chemotherapy treatments show high response rates but have debilitating effects and carry risk of relapse. Previous work implicated NOTCH1 and other oncogenes. However, direct inhibition of these pathways affects healthy tissues and cancer alike. Our goal in this work has been to identify enzymes active in T-ALL whose activity could be targeted for therapeutic purposes. EXPERIMENTAL DESIGN: To identify and characterize new NOTCH1 druggable partners in T-ALL, we coupled studies of the NOTCH1 interactome to expression analysis and a series of functional analyses in cell lines, patient samples, and xenograft models. RESULTS: We demonstrate that ubiquitin-specific protease 7 (USP7) interacts with NOTCH1 and controls leukemia growth by stabilizing the levels of NOTCH1 and JMJD3 histone demethylase. USP7 is highly expressed in T-ALL and is transcriptionally regulated by NOTCH1. In turn, USP7 controls NOTCH1 levels through deubiquitination. USP7 binds oncogenic targets and controls gene expression through stabilization of NOTCH1 and JMJD3 and ultimately H3K27me3 changes. We also show that USP7 and NOTCH1 bind T-ALL superenhancers, and inhibition of USP7 leads to a decrease of the transcriptional levels of NOTCH1 targets and significantly blocks T-ALL cell growth in vitro and in vivo. CONCLUSIONS: These results provide a new model for USP7 deubiquitinase activity through recruitment to oncogenic chromatin loci and regulation of both oncogenic transcription factors and chromatin marks to promote leukemia. Our studies also show that targeting USP7 inhibition could be a therapeutic strategy in aggressive leukemia.


Subject(s)
Jumonji Domain-Containing Histone Demethylases/genetics , Leukemia, T-Cell/genetics , Receptor, Notch1/genetics , Ubiquitin-Specific Peptidase 7/genetics , Animals , Carcinogenesis/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/genetics , Genetic Therapy , Humans , Jurkat Cells , Leukemia, T-Cell/pathology , Leukemia, T-Cell/therapy , Mice , Signal Transduction/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...