Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Mol Biol Plants ; 30(6): 1021-1027, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974355

ABSTRACT

Carthamus tinctorius L. (Safflower) is an important oilseed crop that is cultivated globally. Aphids are a serious pest of safflower and cause significant yield losses of up to 80% due to their ability to multiply rapidly by parthenogenesis. In this study, we report the identification of an aphid-tolerant accession in safflower following screening of a representative global germplasm collection of 327 accessions from 37 countries. Field-based screening methods gave inconsistent and ambiguous results for aphid tolerance between natural and controlled infestation assays and required ~ 3 months for completion. Therefore, we used a rapid, high-throughput hydroponics-based assay system that allows phenotyping of aphid tolerance/susceptibility in a large number of plants in a limited area, significantly reduces the time required to ~ 45 days and avoids inconsistencies observed in field-based studies. We identified one accession out of the 327 tested germplasm lines that demonstrated aphid tolerance in field-based natural and controlled infestation studies and also using the hydroponics approach. Inheritance analysis of the trait was conducted using the hydroponics approach on F1 and F2 progeny generated from a cross between the tolerant and susceptible lines. Aphid-tolerance was observed to be a dominant trait governed by a single locus/gene that can be mobilized after mapping into cultivated varieties of safflower. The hydroponics-based assay described in this study would be very useful for studying the molecular mechanism of aphid-tolerance in safflower and can also be used for bioassays in several other crops that are amenable to hydroponics-based growth. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01467-0.

3.
J Appl Genet ; 63(3): 447-462, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35524104

ABSTRACT

Safflower (Carthamus tinctorius L.), an oilseed crop, is severely affected by Fusarium oxysporum f. sp. carthami (Foc), a fungus causing Fusarium wilt (FW) resulting in up to 80% yield loss. In the present study, we used a panel of 84 diverse accessions from the composite core collection to perform association mapping for FW-resistance. Hydroponics-based screening resulted in categorization of 84 accessions as 31 immune, 19 highly resistant, 9 moderately resistant, 4 moderately susceptible, and 21 highly susceptible. Genotyping with a combination of 155 AFLP and 144 SSR markers revealed substantial genetic differentiation and structure analysis identified three main subpopulations (K = 3) with nearly 35% of admixtures in the panel. Kinship analysis at individual and population level revealed absence of or weak relatedness between the accessions. Association mapping with General Linear Model and Mixed Linear Model identified 4 marker-trait associations (MTAs) significantly linked with the FW-resistance trait. Of these, 3 robust MTAs identified in both the models exhibited phenotypic variance ranging from 4.09 to 6.45%. Locus-128 showing a low P-value and high phenotypic variance was identified as a promising marker-trait association that will facilitate marker-assisted breeding for FW-resistance in safflower.


Subject(s)
Carthamus tinctorius , Fusarium , Amplified Fragment Length Polymorphism Analysis , Carthamus tinctorius/genetics , Fusarium/genetics , Humans , Plant Breeding , Plant Diseases/genetics , Plant Diseases/microbiology
4.
Plants (Basel) ; 10(12)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34961197

ABSTRACT

Nanotechnology has gained popularity in recent years owing to its established potential for application and implementation in various sectors such as medical drugs, medicine, catalysis, energy, material, and plant science. Nanoparticles (NPs) are smaller in size (1-100 nm) with a larger surface area and have many fruitful applications. The extraordinary functions of NPs are utilized in sustainable agriculture due to nano-enabled products, e.g., nano-insecticides, nano-pesticides, and nano-fertilizers. Nanoparticles have lately been suggested as an alternate method for controlling plant pests such as insects, fungi, and weeds. Several NPs exhibit antimicrobial properties considered in food packaging processes; for example, Ag-NPs are commonly used for such purposes. Apart from their antimicrobial properties, NPs such as Si, Ag, Fe, Cu, Al, Zn, ZnO, TiO2, CeO2, Al2O3, and carbon nanotubes have also been demonstrated to have negative impacts on plant growth and development. This review examines the field-use of nano-enabled products in sustainable agriculture, future perspectives, and growing environmental concerns. The remarkable information on commercialized nano-enabled products used in the agriculture and allied sectors are also provided.

SELECTION OF CITATIONS
SEARCH DETAIL
...