Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Org Lett ; 26(27): 5731-5735, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38935556

ABSTRACT

Calixpyrenes, calix[4]arenes incorporating one or two pyrene moieties as a part of their hydrophobic cavities, have been prepared and fully characterized. Distally di-O-propoxy diether of the calix dipyrene, which exists in the pinched cone conformation with nearly parallel pyrene moieties, demonstrates strongly enhanced binding of an organic cation (N-methylpyridinium) compared with the analogous diethers of the parent calix[4]arene.

2.
J Pept Sci ; : e3626, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38810988

ABSTRACT

Polylactide (PLA), a biocompatible and biodegradable polymer, is widely used in diverse biomedical applications. However, the industry standard for converting lactide into PLA involves toxic tin (Sn)-based catalysts. To mitigate the use of these harmful catalysts, other environmentally benign metal-containing agents for efficient lactide polymerization have been studied, but these alternatives are hindered by complex synthesis processes, reactivity issues, and selectivity limitations. To overcome these shortcomings, we explored the catalytic activity of Cu-(Phe)2 and Zn-(Phe)2 metal-amino acid co-assemblies as potential catalysts of the ring-opening polymerization (ROP) of lactide into PLA. Catalytic activity of the assemblies was monitored at different temperatures and solvents using 1H-NMR spectroscopy to determine the catalytic parameters. Notably, Zn-(Phe)2 achieved >99% conversion of lactide to PLA within 12 h in toluene under reflux conditions and was found to have first-order kinetics, whereas Cu-(Phe)2 exhibited significantly lower catalytic activity. Following Zn-(Phe)2-mediated catalysis, the resulting PLA had an average molecular weight of 128 kDa and a dispersity index of 1.25 as determined by gel permeation chromatography. Taken together, our minimalistic approach expands the realm of metal-amino acid-based supramolecular catalytic nanomaterials useful in the ROP of lactide. This advancement shows promise for the future design of simplified biocatalysts in both industrial and biomedical applications.

3.
Bioorg Med Chem Lett ; 108: 129801, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38777279

ABSTRACT

Novel saturated 6-(4'-aryloxy phenyl) vinyl 1,2,4-trioxanes 12a(1-3)-12d(1-3) and 13a(1-3)-13d(1-3) have been designed and synthesized, in one single step from diimide reduction of 11a(1-3)-11d(1-3). All the newly synthesized trioxanes were evaluated for their antimalarial activity against multi-drug resistant Plasmodium yoelii nigeriensis via oral route. Cyclopentane-based trioxanes 12b1, 12c1 and 12d1, provided 100 % protection to the infected mice at 24 mg/kg × 4 days. The most active compound of the series, trioxane 12b1, provided 100 % protection even at 12 mg/kg × 4 days and 60 % protection at 6 mg/kg × 4 days. The currently used drug, ß-arteether provides only 20 % protection at 24 mg/kg × 4 days.


Subject(s)
Antimalarials , Drug Resistance, Multiple , Heterocyclic Compounds , Malaria , Plasmodium yoelii , Animals , Plasmodium yoelii/drug effects , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/chemical synthesis , Mice , Administration, Oral , Drug Resistance, Multiple/drug effects , Malaria/drug therapy , Structure-Activity Relationship , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis , Molecular Structure , Disease Models, Animal , Parasitic Sensitivity Tests
4.
Org Biomol Chem ; 22(16): 3287-3298, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38573240

ABSTRACT

We report herein a highly efficient and mild approach for synthesizing pharmacologically active bis(indolyl)methanes 3a-z, utilizing ZrO2 nanoparticles as a catalyst. The method involves a condensation reaction between indole and diverse aromatic aldehydes in acetonitrile under mild conditions. The ZrO2 nano-catalyst prepared via a co-precipitation method demonstrates exceptional efficacy, leading to favourable yields of the target bis(indolyl)methanes 3a-z. The versatility of this methodology is highlighted through substrate screening, showcasing its applicability to various aromatic aldehydes.

5.
Bioorg Chem ; 143: 107043, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38134523

ABSTRACT

The increasing resistance of various malarial parasite strains to drugs has made the production of a new, rapid-acting, and efficient antimalarial drug more necessary, as the demand for such drugs is growing rapidly. As a major global health concern, various methods have been implemented to address the problem of drug resistance, including the hybrid drug concept, combination therapy, the development of analogues of existing medicines, and the use of drug resistance reversal agents. Artemisinin and its derivatives are currently used against multidrug- resistant P. falciparum species. However, due to its natural origin, its use has been limited by its scarcity in natural resources. As a result, finding a substitute becomes more crucial, and the peroxide group in artemisinin, responsible for the drugs biological action in the form of 1,2,4-trioxane, may hold the key to resolving this issue. The literature suggests that 1,2,4-trioxanes have the potential to become an alternative to current malaria drugs, as highlighted in this review. This is why 1,2,4-trioxanes and their derivatives have been synthesized on a large scale worldwide, as they have shown promising antimalarial activity in vivo and in vitro against Plasmodium species. Consequently, the search for a more convenient, environment friendly, sustainable, efficient, and effective synthetic pathway for the synthesis of 1,2,4-trioxanes continues. The aim of this work is to provide a comprehensive analysis of the synthesis and mechanism of action of 1,2,4-trioxanes. This systematic review highlights the most recent summaries of derivatives of 1,2,4-trioxane compounds and dimers with potential antimalarial activity from January 1988 to 2023.


Subject(s)
Antimalarials , Artemisinins , Heterocyclic Compounds , Artemisinins/pharmacology , Heterocyclic Compounds/pharmacology , Plasmodium falciparum
6.
Med Res Rev ; 44(1): 66-137, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37222435

ABSTRACT

The demand for novel, fast-acting, and effective antimalarial medications is increasing exponentially. Multidrug resistant forms of malarial parasites, which are rapidly spreading, pose a serious threat to global health. Drug resistance has been addressed using a variety of strategies, such as targeted therapies, the hybrid drug idea, the development of advanced analogues of pre-existing drugs, and the hybrid model of resistant strains control mechanisms. Additionally, the demand for discovering new potent drugs grows due to the prolonged life cycle of conventional therapy brought on by the emergence of resistant strains and ongoing changes in existing therapies. The 1,2,4-trioxane ring system in artemisinin (ART) is the most significant endoperoxide structural scaffold and is thought to be the key pharmacophoric moiety required for the pharmacodynamic potential of endoperoxide-based antimalarials. Several derivatives of artemisinin have also been found as potential treatments for multidrug-resistant strain in this area. Many 1,2,4-trioxanes, 1,2,4-trioxolanes, and 1,2,4,5-tetraoxanes derivatives have been synthesised as a result, and many of these have shown promise antimalarial activity both in vivo and in vitro against Plasmodium parasites. As a consequence, efforts to develop a functionally straight-forward, less expensive, and vastly more effective synthetic pathway to trioxanes continue. This study aims to give a thorough examination of the biological properties and mode of action of endoperoxide compounds derived from 1,2,4-trioxane-based functional scaffolds. The present system of 1,2,4-trioxane, 1,2,4-trioxolane, and 1,2,4,5-tetraoxane compounds and dimers with potentially antimalarial activity will be highlighted in this systematic review (January 1963-December 2022).


Subject(s)
Antimalarials , Artemisinins , Tetraoxanes , Humans , Antimalarials/chemistry , Artemisinins/pharmacology , Artemisinins/chemistry , Plasmodium falciparum , Systematic Reviews as Topic , Tetraoxanes/pharmacology , Tetraoxanes/chemistry
7.
Antioxidants (Basel) ; 12(9)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37759963

ABSTRACT

A family of seven NADPH oxidase enzymes (Nox1-5, Duox1-2) has been implicated in a variety of diseases, including inflammatory lung diseases, neurodegenerative diseases, cardiovascular diseases, and cancer. Here, we report the results of our studies aimed at developing novel brain-permeable Nox2 inhibitors with potential application as neuroprotective agents. Using cell-based assays, we identified a novel Nox2 inhibitor, TG15-132, that prevents PMA-stimulated oxygen consumption and reactive oxygen species (superoxide radical anion and hydrogen peroxide) formation upon acute treatment in differentiated HL60 cells. Long-term treatment with TG15-132 attenuates the induction of genes encoding Nox2 subunits, several inflammatory cytokines, and iNOS in differentiated THP-1 cells. Moreover, TG15-132 shows a relatively long plasma half-life (5.6 h) and excellent brain permeability, with a brain-to-plasma ratio (>5-fold) in rodent models. Additionally, TG15-132 does not cause any toxic effects on vital organs or blood biomarkers of toxicity in mice upon chronic dosing for seven days. We propose that TG15-132 may be used as a Nox2 inhibitor and a potential neuroprotective agent, with possible further structural modifications to increase its potency.

8.
ACS Omega ; 8(15): 13479-13491, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37091416

ABSTRACT

Polylactide synthetic procedures have lately gained attention, possibly due to their biocompatibility and the environmental problems associated with fossil-fuel-based polymers. Polylactides can be obtained from natural sources such as cassava, corn, and sugar beet, and polylactides can be manufactured in a laboratory using a variety of processes that begin with lactic acid or lactide. One of the most effective synthetic pathways is through a Lewis acid catalyzed ring-opening polymerization of lactides to obtain a well-defined polymer. In this regard, calixarenes, because of their easy functionalization and tunable properties, have been widely considered to be a suitable 3D molecular scaffold for new metal complexes that can be used for lactide polymerization. This review summarizes the progress made in applying some metal-calixarene complexes in the ring-opening polymerization of lactide.

9.
Chem Commun (Camb) ; 59(37): 5543-5546, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37071048

ABSTRACT

Novel oxygen-depleted calix[4]arenes containing fused carbazole moieties demonstrate AIEgen behavior in aqueous solutions. This phenomenon leads to highly sensitive detection of nitric-oxide guest molecules because it affects intra- and intermolecular energy transfer within aggregates.

10.
ACS Pharmacol Transl Sci ; 6(1): 128-138, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36654746

ABSTRACT

Traumatic brain injury (TBI) in patients results in a massive inflammatory reaction, disruption of blood-brain barrier, and oxidative stress in the brain, and these inciting features may culminate in the emergence of post-traumatic epilepsy (PTE). We hypothesize that targeting these pathways with pharmacological agents could be an effective therapeutic strategy to prevent epileptogenesis. To design therapeutic strategies targeting neuroinflammation and oxidative stress, we utilized a fluid percussion injury (FPI) rat model to study the temporal expression of neuroinflammatory and oxidative stress markers from 3 to 24 h following FPI. FPI results in increased mRNA expression of inflammatory mediators including cyclooxygenase-2 (COX-2) and prostanoid receptor EP2, marker of oxidative stress (NOX2), astrogliosis (GFAP), and microgliosis (CD11b) in ipsilateral cortex and hippocampus. The analysis of protein levels indicated a significant increase in the expression of COX-2 in ipsilateral hippocampus and cortex post-FPI. We tested FPI rats with an EP2 antagonist TG8-260 which produced a statistically significant reduction in the distribution of seizure duration post-FPI and trends toward a reduction in seizure incidence, seizure frequency, and duration, hinting a proof of concept that EP2 antagonism must be further optimized for therapeutic applications to prevent epileptogenesis.

11.
Luminescence ; 38(7): 845-866, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35419945

ABSTRACT

Carbon quantum dots (CQDs) are promising carbonaceous nanomaterials fortuitously discovered in 2004. CQDs are the rising stars in the nanotechnology ensemble because of their unique properties and widespread applications in sensing, imaging, medicine, catalysis, and optoelectronics. CQDs are notable for their excellent solubility and effective luminescence and, as a result, they are also known as carbon nanolights. Many strategies are used for the efficient and economical preparation of CQDs; however, CQDs prepared from waste or green sustainable methods have greater requirements due to their safety and ease of synthesis. Sustainable chemical strategies for CQDs have been developed, emphasizing green synthetic methodologies based on 'top-down' and 'bottom-up' approaches. This review summarizes many such studies relevant to the development of sustainable methods for photoluminescent CQDs. Furthermore, we have emphasized recent advances in CQDs' photoluminescence applications in chemical and biological fields. Finally, a brief overview of synthetic processes using the green source and their associated applications are tabulated, providing a clear understanding of the new optoelectronic materials.


Subject(s)
Quantum Dots , Quantum Dots/chemistry , Carbon/chemistry , Luminescence , Catalysis
12.
Molecules ; 27(17)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36080456

ABSTRACT

A series of fluorescent calix[4]arene scaffolds bearing electron-rich carbazole moiety conjugated at the lower rim have been prepared. Studies of the fluorescence quenching in the presence of the N-methyl pyridinium guest revealed that the electronic properties of the distal phenolic ring play a major role in the host-guest complexation. In particular, placing an electron-donating piperidine fragment at that ring significantly increased the host-guest interactions, while introducing the same fragment into the proximal phenolic ring weakened the fluorescence response. These results suggest that the dominant interactions between the guest and calixarene cavity involve the oxygen-depleted fluorophore-bearing aromatic ring and not the more electron-rich unsubstituted phenolic fragments.


Subject(s)
Calixarenes , Electronics , Fluorescence , Ionophores , Phenols
13.
ACS Omega ; 7(32): 28471-28480, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35990458

ABSTRACT

The synthesis and characterization of a new octahedral Zr(IV) complex of oxygen-depleted N,O-type calixarene ligand comprising two distal-functionalized pyrazole rings have been reported. The cone shape and structure of the prepared complex were confirmed univocally by single-crystal X-ray diffraction and NMR studies. The Zr metal lies at 2.091 Å from the plane of the calixarene ring. This complex has been utilized as an efficient catalyst for the synthesis of Biginelli adducts, bis(indolyl)methanes, and coumarins. This complex (Cl2Zr-calixarene) showed superior activity for these multicomponent reactions in comparison to the corresponding Ti(IV) and Zn(II) analogues. Ferrocene-appended bis(indolyl)methane, prepared using this catalyst, was also evaluated for its anticancer activity against the A-172 cell line.

14.
ACS Omega ; 7(21): 17984-17994, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35664617

ABSTRACT

A mechanistic approach to understand the course of metabolism for synthetic 1,2,4-trioxanes, potent antimalarial compounds, to evaluate their bioavailability for antimalarial action has been studied in the present work. It is an important parameter to study the course of metabolism of a drug candidate molecule when administered via oral route during its journey from oral intake to its target site. From the pharmacokinetics point of view, it determines the bioavailability of an active drug or a prodrug at the target point. In this work, synthetic arylvinyl-1,2,4-trioxanes 1a-u have been evaluated under various acidic conditions to mimic the milieu of the stomach (pH between 1.5 and 3.5) through which they have to pass when administered orally. The effect of acid on trioxanes led to their degradation into corresponding ketones and glyoxal. Under such acidic conditions glyoxal polymerized to form a nonisolable condensate product. The study indicates that the actual bioavailability of the drug is far less than the administered dose.

15.
3 Biotech ; 12(4): 92, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35342680

ABSTRACT

Electrospinning is an electrostatic fiber fabrication technique that operates by the application of a strong electric field on polymer solution or melts. It is used to fabricate fibers whose size lies in the range of few microns to the nanometer range. Historic development of electrospinning has evinced attention due to its outstanding attributes such as small diameter, excellent pore inter-connectivity, high porosity, and high surface-to-volume ratio. This review aims to highlight the theory behind electrospinning and the machine setup with a detailed discussion about the processing parameters. It discusses the latest innovations in natural protein-based electrospun nanofibers for health care applications. Various plant- and animal-based proteins have been discussed with detailed sample preparation and corresponding processing parameters. The usage of these electrospun nanofibers in regenerative medicine and drug delivery has also been discussed. Some technical innovations in electrospinning techniques such as emulsion electrospinning and coaxial electrospinning have been highlighted. Coaxial electrospun core-shell nanofibers have the potential to be utilized as an advanced nano-architecture for sustained release targeted delivery as well as for regenerative medicine. Healthcare applications of nanofibers formed via emulsion and coaxial electrospinning have been discussed briefly. Electrospun nanofibers have still much scope for commercialization on large scale. Some of the available wound-dressing materials have been discussed in brief.

16.
Biomed Pharmacother ; 147: 112646, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35091236

ABSTRACT

The EP2 receptor has emerged as a therapeutic target with exacerbating role in disease pathology for a variety of peripheral and central nervous system disorders. We and others have recently demonstrated beneficial effects of EP2 antagonists in preclinical models of neuroinflammation and peripheral inflammation. However, it was earlier reported that mice with global EP2 knockout (KO) display adverse phenotypes on fertility and blood pressure. Other studies indicated that EP2 activation with an agonist has a beneficial effect of healing fractured bone in animal models. These results impeded the development of EP2 antagonists, and EP2 antagonism as therapeutic strategy. To determine whether treatment with EP2 antagonist mimics the adverse phenotypes of the EP2 global KO mouse, we tested two EP2 antagonists TG11-77. HCl and TG6-10-1 in mice and rats while they are on normal or high-salt diet, and by two different administration protocols (acute and chronic). There were no adverse effects of the antagonists on systolic and diastolic blood pressure, heart rate, respiratory function in mice and rats regardless of rodents being on a regular or high salt diet. Furthermore, chronic exposure to TG11-77. HCl produced no adverse effects on blood cell counts, bone-volume and bone-mineral density in mice. Our findings argue against adverse effects on cardiovascular and respiratory systems, blood counts and bone structure in healthy rodents from the use of small molecule reversible antagonists for EP2, in contrast to the genetic ablation model. This study paves the way for advancing therapeutic applications of EP2 antagonists against diseases involving EP2 dysfunction.


Subject(s)
Cardiovascular Diseases/pathology , Receptors, Prostaglandin E, EP2 Subtype/antagonists & inhibitors , Animals , Blood Cell Count , Bone Density/drug effects , Bone and Bones/drug effects , Disease Models, Animal , Female , Hemodynamics/drug effects , Indoles/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Rats , Rats, Sprague-Dawley , Respiratory Rate/drug effects
17.
Bioorg Med Chem Lett ; 51: 128372, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34547418

ABSTRACT

A new series of 1,2,4-trioxanes 9a1-a4, 9b1-b4, 10-13 and 9c1-c4 were synthesized and evaluated against multidrug-resistant Plasmodium yoelii nigeriensis in Swiss mice via oral and intramuscular (i.m.) routes. Adamantane-based trioxane 9b4, the most active compound of the series, provided 100% protection to the infected mice at the dose 48 mg/kg × 4 days and 100% clearance of parasitemia at the dose 24 mg/kg × 4 days via oral route. Adamantane-based trioxane 9b4, is twice active than artemisinin. We have also studied the photooxygenation behaviour of allylic alcohols 6a-b (3-(4-alkoxynaphthyl)-but-2-ene-1-ols) and 6c (3-[4-(tert-butyl-dimethyl-silanyloxy)-naphthalen-1-yl]-but-2-en-1-ol). Being behaving as dienes, they furnished corresponding endoperoxides, while behaving as allylic alcohols, they yielded ß-hydroxyhydroperoxides. All the endoperoxides (7a-c) and ß-hydroxyhydroperoxides (8a-c) have been separately elaborated to the corresponding 1,2,4-trioxanes, except from endoperoxide 7c. It is worthy to note that TBDMS protected naphthoyl endoperoxide 7c unable to deliver 1,2,4-trioxane, which demonstrated the strength of the O-Si bond is not easy to cleave under acidic condition.


Subject(s)
Antimalarials/pharmacology , Heterocyclic Compounds/pharmacology , Malaria/drug therapy , Plasmodium yoelii/drug effects , Animals , Antimalarials/chemical synthesis , Antimalarials/chemistry , Dose-Response Relationship, Drug , Drug Resistance, Multiple/drug effects , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Malaria/parasitology , Mice , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship
19.
Biomolecules ; 10(5)2020 05 04.
Article in English | MEDLINE | ID: mdl-32375303

ABSTRACT

Recent advances in woundcare is targeted towards developing active-dressings, where multiple components are combined to provide a suitable environment for rapid healing. The aim of the present research is to study the preparation of biomimic composite wound dressings by the grafting of hydrogel on silk fibroin fabric. The swelling ability of hydrogel grafted silk fibroin fabric was optimized by changing the initiator concentration. In order to impart antimicrobial properties, these dressing are further coated sono-chemically with zinc oxide nanoparticles. The water vapor transmission rate of the prepared samples was measured. The conformation of silk fibroin proteins after grafting with hydrogel was also confirmed using Fourier Transform Infrared Spectroscopy (FTIR). The morphology of the zinc oxide-coated silk fibroin fabric and hydrogel-coated silk fibroin was studied using Scanning Electron Microscope (SEM). The antimicrobial activity of the zinc oxide-coated samples was studied against E coli. The cytocompatibility of the prepared dressing materials were evaluated using L929 fibroblast cells. MTT assay and phase contrast microscopic studies showed that the adherence, growth, and proliferation of the L929 fibroblast cells that were seeded on zinc oxide nanoparticles on the functionalized hydrogel-coated silk fibroin dressing was significantly higher than that of pure silk fibroin due to the highly porous, bio-mimic structure that allowed ease of passage of nutrients, growth factors, metabolites, and the exchange of gases which is beneficial for successful regeneration of damaged tissues. The expression of TNF-α and IL-2 were not significantly higher than that of control. The proposed composite dressing would be a promising material for wound dressing and regenerative medicine but in order to prove the efficacy of these materials, more in vivo experiments and clinical tests are required to be conducted in future.


Subject(s)
Bandages, Hydrocolloid , Fibroins/chemistry , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Zinc Oxide/chemistry , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Cell Line , Cytokines/metabolism , Escherichia coli/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Hydrogels/chemistry , Mice , Nanocomposites/adverse effects
20.
J Neurosci ; 39(48): 9611-9622, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31641056

ABSTRACT

The APOE ε4 allele is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). ApoE protein aggregation plays a central role in AD pathology, including the accumulation of ß-amyloid (Aß). Lipid-poor ApoE4 protein is prone to aggregate and lipidating ApoE4 protects it from aggregation. The mechanisms regulating ApoE4 aggregation in vivo are surprisingly not known. ApoE lipidation is controlled by the activity of the ATP binding cassette A1 (ABCA1). ABCA1 recycling and degradation is regulated by ADP-ribosylation factor 6 (ARF6). We found that ApoE4 promoted greater expression of ARF6 compared with ApoE3, trapping ABCA1 in late-endosomes and impairing its recycling to the cell membrane. This was associated with lower ABCA1-mediated cholesterol efflux activity, a greater percentage of lipid-free ApoE particles, and lower Aß degradation capacity. Human CSF from APOE ε4/ε4 carriers showed a lower ability to induce ABCA1-mediated cholesterol efflux activity and greater percentage of aggregated ApoE protein compared with CSF from APOE ε3/ε3 carriers. Enhancing ABCA1 activity rescued impaired Aß degradation in ApoE4-treated cells and reduced both ApoE and ABCA1 aggregation in the hippocampus of male ApoE4-targeted replacement mice. Together, our data demonstrate that aggregated and lipid-poor ApoE4 increases ABCA1 aggregation and decreases ABCA1 cell membrane recycling. Enhancing ABCA1 activity to reduce ApoE and ABCA1 aggregation is a potential therapeutic strategy for the prevention of ApoE4 aggregation-driven pathology.SIGNIFICANCE STATEMENT ApoE protein plays a key role in the formation of amyloid plaques, a hallmark of Alzheimer's disease (AD). ApoE4 is more aggregated and hypolipidated compared with ApoE3, but whether enhancing ApoE lipidation in vivo can reverse ApoE aggregation is not known. ApoE lipidation is controlled by the activity of the ATP binding cassette A1 (ABCA1). In this study, we demonstrated that the greater propensity of lipid-poor ApoE4 to aggregate decreased ABCA1 membrane recycling and its ability to lipidate ApoE. Importantly, enhancing ABCA1 activity to lipidate ApoE reduced ApoE and ABCA1 aggregation. This work provides critical insights into the interactions among ABCA1, ApoE lipidation and aggregation, and underscores the promise of stabilizing ABCA1 activity to prevent ApoE-driven aggregation pathology.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , Apolipoprotein E4/metabolism , Astrocytes/metabolism , Cell Membrane/metabolism , ADP-Ribosylation Factor 6 , Aged , Aged, 80 and over , Animals , Apolipoprotein E4/pharmacology , Astrocytes/drug effects , Cell Line, Transformed , Cell Membrane/drug effects , Cells, Cultured , Cricetinae , Female , HeLa Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Protein Binding/drug effects , Protein Binding/physiology , Protein Transport/drug effects , Protein Transport/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...