Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
J Mater Sci Mater Med ; 24(1): 179-87, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23053801

ABSTRACT

The impact of mat porosity of polycaprolactone (PCL) electrospun fibers on the infiltration of neuron-like PC12 cells was evaluated using two different approaches. In the first method, bi-component aligned fiber mats were fabricated via the co-electrospinning of PCL with polyethylene oxide (PEO). Variation of the PEO flow rate, followed by selective removal of PEO from the PCL/PEO mesh, allowed for control of the porosity of the resulting scaffold. In the second method, aligned fiber mats were fabricated from various concentrations of PCL solutions to generate fibers with diameters between 0.13 ± 0.06 and 9.10 ± 4.1 µm. Of the approaches examined, the variation of PCL fiber diameter was found to be the better method for increasing the infiltration of PC12 cells, with the optimal infiltration into the ca. 1.5-mm-thick meshes observed for the mats with the largest fiber diameters, and hence largest pore sizes.


Subject(s)
Polyesters/chemistry , Tissue Scaffolds , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared
2.
ACS Appl Mater Interfaces ; 4(4): 2074-81, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22409446

ABSTRACT

The surface modification of synthetic tissue engineering scaffolds is essential to improving their hydrophilicity and cellular compatibility. Plasma treatment is an effective way to increase the hydrophilicity of a surface, but the incorporation of biomolecules is also important to control cellular adhesion and differentiation, among many other outcomes. In this work, oriented polycaprolactone (PCL) electrospun fibers were modified by air-plasma treatment, followed by the covalent attachment of laminin. The amount of protein incorporated onto the fiber surface was controlled by varying the reaction time and the protein solution concentration. The protein concentration and coverage were quantified using X-ray photoelectron spectroscopy (XPS), solid-state ultraviolet-visible spectroscopy (UV-vis) and two fluorescence-based assays. XPS results showed a nearly linear increase in protein coverage with increasing protein soaking solution concentration until a monolayer was formed. Results from XPS and the NanoOrange fluorescence assay revealed multilayer protein coverage at protein solution concentrations between 25 and 50 µg/mL, whereas the UV-vis assay demonstrated multilayer coverage at lower protein solution concentrations. The effect of protein concentration on the neurite outgrowth of neuron-like PC12 cells was evaluated, and outgrowth rates were found to be positively correlated to increasing protein concentration.


Subject(s)
Polyesters/chemistry , Proteins/analysis , Tissue Engineering/instrumentation , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Cell Adhesion , Cell Line , Cells/cytology , Cells/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Proteins/metabolism , Surface Properties
3.
J Phys Chem B ; 115(43): 12441-7, 2011 Nov 03.
Article in English | MEDLINE | ID: mdl-21928836

ABSTRACT

Poly(methyl methacrylate) (PMMA)-polyacrylonitrile (PAN) fibers were prepared using a conventional single-nozzle electrospinning technique. The as-spun fibers exhibited core-shell morphology as verified by transmission electron microscopy (TEM) and atomic force microscopy (AFM). AFM-phase and modulus mapping images of the fiber cross-section and X-ray photoelectron spectroscopy (XPS) analysis indicated that PAN formed the shell and PMMA formed the core material. XPS, thermogravimetric analysis (TGA), and elemental analysis were used to determine fiber compositional information. Soaking the fibers in solvent demonstrated removal of the core material, generating hollow PAN fibers.


Subject(s)
Acrylic Resins/chemistry , Nanofibers/chemistry , Polymethyl Methacrylate/chemistry , Microscopy, Atomic Force , Nanofibers/ultrastructure , Photoelectron Spectroscopy , Thermogravimetry
4.
Biointerphases ; 5(4): 149-58, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21219036

ABSTRACT

Biomaterial bridges constructed from electrospun fibers offer a promising alternative to traditional nerve tissue regeneration substrates. Aligned and unaligned polycaprolactone (PCL) electrospun fibers were prepared and functionalized with the extracellular matrix proteins collagen and laminin using covalent and physical adsorption attachment chemistries. The effect of the protein modified and native PCL nanofiber scaffolds on cell proliferation, neurite outgrowth rate, and orientation was examined with neuronlike PC12 cells. All protein modified scaffolds showed enhanced cellular adhesion and neurite outgrowth compared to unmodified PCL scaffolds. Neurite orientation was found to be in near perfect alignment with the fiber axis for cells grown on aligned fibers, with difference angles of less than 7° from the fiber axis, regardless of the surface chemistry. The bioavailability of PCL fibers with covalently attached laminin was found to be identical to that of PCL fibers with physically adsorbed laminin, indicating that the covalent chemistry did not change the protein conformation into a less active form and the covalent attachment of protein is a suitable method for enhancing the biocompatibility of tissue engineering scaffolds.


Subject(s)
Biocompatible Materials/chemistry , Nanofibers/ultrastructure , Neurites/physiology , Tissue Culture Techniques/methods , Tissue Scaffolds , Adsorption , Analysis of Variance , Animals , Cell Differentiation , Cell Proliferation , Cell Survival , Collagen/metabolism , Electrochemical Techniques , Laminin/metabolism , Microscopy, Confocal , Microscopy, Electron, Scanning , Nanofibers/chemistry , Neurites/metabolism , PC12 Cells , Rats
5.
Langmuir ; 24(3): 654-7, 2008 Feb 05.
Article in English | MEDLINE | ID: mdl-18161999

ABSTRACT

Poly(methyl methacrylate) (PMMA) was electrospun in the presence of a low molecular weight, hyperbranched poly(ethylene imine) additive partially functionalized with perfluorinated and aliphatic end-groups (M(n) approximately 1600 g/mol). The additive exhibited surface segregation with an insignificant influence on the rheological behavior of PMMA solutions. A morphological transition from beaded electrospun fibers to uniform fibers was observed upon introduction of additive at low PMMA concentrations. XPS revealed a surface enrichment of fluorine and nitrogen, which are both present in the hyperbranched additive. Surface fluorine content depended primarily on the amount of additive in solution, and a dependency on the PMMA/additive weight ratio was not observed.

6.
J Chem Theory Comput ; 3(3): 870-7, 2007 May.
Article in English | MEDLINE | ID: mdl-26627406

ABSTRACT

Phthalocyanines, naphthalocyanins, and their derivatives are frequently used as light modulating materials. These compounds, with their stable planar square structure and highly delocalized π-electron system, are being used in numerous technological applications, such as pigments in chemical sensors, and more recently as photosensitizers for photodynamic therapy. The nonlinear optical properties (NLO) of these compounds are of particular importance. Using density functional method (DFT), we calculated the optical properties of phthalocyanine and naphthalocyanine complexes with Si as a central atom. We examined the effect of hydrophilic axial substituents and the size of polycyclic aromatic hydrocarbons surrounding the porphyrazine-Si kernel on the optical properties of title molecules. Both UV-vis and RSA spectra are calculated and are compared with available experimental results. The time-dependent DFT (TDDFT) with the B3LYP functional predicts that the characteristic UV-vis absorption maxima are blue-shifted; however, the relative error is almost constant for phthalocyanine and naphthalocyanine compounds. The TDDFT triplet-triplet absorption spectra of Si-phthalocyanine and Si-naphthalocyanine complexes reproduce experimental data well.

7.
Langmuir ; 22(23): 9687-93, 2006 Nov 07.
Article in English | MEDLINE | ID: mdl-17073498

ABSTRACT

Self-assembly processes and subsequent photo-cross-linking were used to generate cross-linked, ordered microporous structures on the surfaces of well defined four-arm star-shaped poly(D,L-lactide) (PDLLA) thin films. The four-arm star-shaped PDLLAs were synthesized using an ethoxylated pentaerythritol initiator. Solutions of the PDLLAs were cast in a humid environment, and upon solvent evaporation, ordered honeycomb structures (or breath figures) were obtained. Correlations between molar mass, polymer solution viscosity, and pore dimensions were established. The average pore dimension decreased with increasing polymer solution concentration, and a linear relationship was observed between relative humidity and average pore dimensions. Highly ordered microporous structures were also developed on four-arm star-shaped methacrylate-modified PDLLA (PDLLA-UM) thin films. Subsequent photo-cross-linking resulted in more stable PDLLA porous films. The photo-cross-linked films were insoluble, and the honeycomb structures were retained despite solvent exposure. Free-standing, structured PDLLA-UM thin films were obtained upon drying for 24 h. Ordered microporous films based on biocompatible and biodegradable polymers, such as PDLLA, offer potential applications in biosensing and biomedical applications.


Subject(s)
Cross-Linking Reagents/chemistry , Lactic Acid/chemistry , Polymers/chemistry , Methacrylates/chemistry , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Molecular Structure , Photochemistry , Polyesters , Solutions , Spectroscopy, Fourier Transform Infrared , Surface Properties , Viscosity
8.
J Am Chem Soc ; 127(25): 9235-40, 2005 Jun 29.
Article in English | MEDLINE | ID: mdl-15969602

ABSTRACT

We have studied electron transport properties of unsubstituted oligo(phenylene ethynylene) (OPE) (1) and nitro-substituted OPE (2) covalently bound to two gold electrodes. The conductance values of single 1 and 2 are approximately 13 and approximately 6 nS, respectively. In addition to a decrease in the conductance, the presence of the nitro moiety leads to asymmetric I-V characteristics and a negative differential resistance-like (NDR-like) behavior. We have altered the nitro-substituted OPE by electrochemically reducing the nitro group and by varying the pH of the electrolyte. The conductance decreases linearly with the electron-withdrawing capability (i.e., Hammett substituent values) of the corresponding reduced species. In contrast, the conductance of 1 is independent of the pH and the electrode potential.


Subject(s)
Electric Conductivity , Polymers/chemistry , Electrochemistry , Electrodes , Molecular Structure
9.
Science ; 300(5624): 1413-6, 2003 May 30.
Article in English | MEDLINE | ID: mdl-12775835

ABSTRACT

Stochastic on-off conductivity switching observed in phenylene-ethynylene oligomers has been explained in terms of changes in ring conformations, or electron localization, or both. We report the observation of stochastic on-off switching in the simplest of wired molecules: octanedithiol, decanedithiol, and dodecanedithiol bonded on an Au(111) surface. Stochastic switching was observed even when a top gold contact was pressed on by a conducting atomic force microscope tip at constant force. The rate of switching increased substantially at 60 degrees C, a temperature at which these films are commonly annealed. Because such switching in alkanethiols is unlikely to be caused by internal molecular electronic changes and cannot be fully accounted for by breaking of the top contact, we argue that the cause is the well-known mobility of molecules tethered to gold via a thiol linkage.

10.
J Am Chem Soc ; 124(19): 5550-60, 2002 May 15.
Article in English | MEDLINE | ID: mdl-11996598

ABSTRACT

The electrical properties of self-assembled monolayers (SAMs) on metal surfaces have been explored for a series of molecules to address the relation between the behavior of a molecule and its structure. We probed interfacial electron transfer processes, particularly those involving unoccupied states, of SAMs of thiolates or arylates on Au by using shear force-based scanning probe microscopy (SPM) combined with current-voltage (i-V) and current-distance (i-d) measurements. The i-V curves of hexadecanethiol in the low bias regime were symmetric around 0 V and the current increased exponentially with V at high bias voltage. Different than hexadecanethiol, reversible peak-shaped i-V characteristics were obtained for most of the nitro-based oligo(phenylene ethynylene) SAMs studied here, indicating that part of the conduction mechanism of these junctions involved resonance tunneling. These reversible peaked i-V curves, often described as a negative differential resistance (NDR) effect of the junction, can be used to define a threshold tip bias, V(TH), for resonant conduction. We also found that for all of the SAMs studied here, the current decreased with increasing distance, d, between tip and substrate. The attenuation factor beta of hexadecanethiol was high, ranging from 1.3 to 1.4 A(-1), and was nearly independent of the tip bias. The beta-values for nitro-based molecules were low and depended strongly on the tip bias, ranging from 0.15 A(-1) for tetranitro oligo(phenylene ethynylene) thiol, VII, to 0.50 A(-1) for dinitro oligo(phenylene) thiol, VI, at a -3.0 V tip bias. Both the V(TH) and beta values of these nitro-based SAMs were also strongly dependent on the structures of the molecules, e.g. the number of electroactive substituent groups on the central benzene, the molecular wire backbone, the anchoring linkage, and the headgroup. We also observed charge storage on nitro-based molecules. For a SAM of the dintro compound, V, approximately 25% of charge collected in the negative scan is stored in the molecules and can be collected at positive voltages. A possible mechanism involving lateral electron hopping is proposed to explain this phenomenon.

SELECTION OF CITATIONS
SEARCH DETAIL