Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Metab ; 77: 101803, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37690518

ABSTRACT

OBJECTIVE: An environmental context, which reliably predicts food availability, can increase the appetitive food drive within the same environment context. However, hunger is required for the development of such a context-induced feeding (CIF) response, suggesting the neural circuits sensitive to hunger link an internal energy state with a particular environment context. Since Agouti related peptide (AgRP) neurons are activated by energy deficit, we hypothesised that AgRP neurons are both necessary and sufficient to drive CIF. METHODS: To examine the role of AgRP neurons in the CIF process, we used fibre photometry with GCaMP7f, chemogenetic activation of AgRP neurons, as well as optogenetic control of AgRP neurons to facilitate acute temporal control not permitted with chemogenetics. RESULTS: A CIF response at test was only observed when mice were fasted during context training and AgRP population activity at test showed an attenuated inhibitory response to food, suggesting increased food-seeking and/or decreased satiety signalling drives the increased feeding response at test. Intriguingly, chemogenetic activation of AgRP neurons during context training did not increase CIF, suggesting precise temporal firing properties may be required. Indeed, termination of AgRP neuronal photostimulation during context training (ON-OFF in context), in the presence or absence of food, increased CIF. Moreover, photoinhibition of AgRP neurons during context training in fasted mice was sufficient to drive a subsequent CIF in the absence of food. CONCLUSIONS: Our results suggest that AgRP neurons regulate the acquisition of CIF when the acute inhibition of AgRP activity is temporally matched to context exposure. These results establish acute AgRP inhibition as a salient neural event underscoring the effect of hunger on associative learning.

2.
Biol Psychiatry ; 93(4): 309-321, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36400605

ABSTRACT

BACKGROUND: A greater understanding of how the brain controls appetite is fundamental to developing new approaches for treating diseases characterized by dysfunctional feeding behavior, such as obesity and anorexia nervosa. METHODS: By modeling neural network dynamics related to homeostatic state and body mass index, we identified a novel pathway projecting from the medial prefrontal cortex (mPFC) to the lateral hypothalamus (LH) in humans (n = 53). We then assessed the physiological role and dissected the function of this mPFC-LH circuit in mice. RESULTS: In vivo recordings of population calcium activity revealed that this glutamatergic mPFC-LH pathway is activated in response to acute stressors and inhibited during food consumption, suggesting a role in stress-related control over food intake. Consistent with this role, inhibition of this circuit increased feeding and sucrose seeking during mild stressors, but not under nonstressful conditions. Finally, chemogenetic or optogenetic activation of the mPFC-LH pathway is sufficient to suppress food intake and sucrose seeking in mice. CONCLUSIONS: These studies identify a glutamatergic mPFC-LH circuit as a novel stress-sensitive anorexigenic neural pathway involved in the cortical control of food intake.


Subject(s)
Feeding Behavior , Hypothalamic Area, Lateral , Prefrontal Cortex , Stress, Psychological , Animals , Humans , Mice , Feeding Behavior/physiology , Hypothalamic Area, Lateral/physiology , Prefrontal Cortex/physiology , Stress, Psychological/physiopathology
3.
Endocrinology ; 163(8)2022 08 01.
Article in English | MEDLINE | ID: mdl-35788848

ABSTRACT

The ventromedial hypothalamic (VMH) nucleus is a well-established hub for energy and glucose homeostasis. In particular, VMH neurons are thought to be important for initiating the counterregulatory response to hypoglycemia, and ex vivo electrophysiology and immunohistochemistry data indicate a clear role for VMH neurons in sensing glucose concentration. However, the temporal response of VMH neurons to physiologically relevant changes in glucose availability in vivo has been hampered by a lack of available tools for measuring neuronal activity over time. Since the majority of neurons within the VMH are glutamatergic and can be targeted using the vesicular glutamate transporter Vglut2, we expressed cre-dependent GCaMP7s in Vglut2 cre mice and examined the response profile of VMH to intraperitoneal injections of glucose, insulin, and 2-deoxyglucose (2DG). We show that reduced available glucose via insulin-induced hypoglycemia and 2DG-induced glucoprivation, but not hyperglycemia induced by glucose injection, inhibits VMH Vglut2 neuronal population activity in vivo. Surprisingly, this inhibition was maintained for at least 45 minutes despite prolonged hypoglycemia and initiation of a counterregulatory response. Thus, although VMH stimulation, via pharmacological, electrical, or optogenetic approaches, is sufficient to drive a counterregulatory response, our data suggest VMH Vglut2 neurons are not the main drivers required to do so, since VMH Vglut2 neuronal population activity remains suppressed during hypoglycemia and glucoprivation.


Subject(s)
Hypoglycemia , Insulin , Animals , Blood Glucose , Deoxyglucose/pharmacology , Glucose/pharmacology , Insulin/pharmacology , Male , Mice , Neurons , Photometry , Rats , Rats, Sprague-Dawley , Ventromedial Hypothalamic Nucleus
4.
Elife ; 112022 01 12.
Article in English | MEDLINE | ID: mdl-35018884

ABSTRACT

Agouti-related peptide (AgRP) neurons increase motivation for food, however, whether metabolic sensing of homeostatic state in AgRP neurons potentiates motivation by interacting with dopamine reward systems is unexplored. As a model of impaired metabolic-sensing, we used the AgRP-specific deletion of carnitine acetyltransferase (Crat) in mice. We hypothesised that metabolic sensing in AgRP neurons is required to increase motivation for food reward by modulating accumbal or striatal dopamine release. Studies confirmed that Crat deletion in AgRP neurons (KO) impaired ex vivo glucose-sensing, as well as in vivo responses to peripheral glucose injection or repeated palatable food presentation and consumption. Impaired metabolic-sensing in AgPP neurons reduced acute dopamine release (seconds) to palatable food consumption and during operant responding, as assessed by GRAB-DA photometry in the nucleus accumbens, but not the dorsal striatum. Impaired metabolic-sensing in AgRP neurons suppressed radiolabelled 18F-fDOPA accumulation after ~30 min in the dorsal striatum but not the nucleus accumbens. Impaired metabolic sensing in AgRP neurons suppressed motivated operant responding for sucrose rewards during fasting. Thus, metabolic-sensing in AgRP neurons is required for the appropriate temporal integration and transmission of homeostatic hunger-sensing to dopamine signalling in the striatum.


Subject(s)
Agouti-Related Protein/genetics , Corpus Striatum/physiology , Dopamine/physiology , Homeostasis , Neurons/physiology , Signal Transduction , Agouti-Related Protein/metabolism , Animals , Mice , Mice, Knockout
5.
J Neuroendocrinol ; 33(4): e12939, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33634518

ABSTRACT

Insulin has long been known as a metabolic hormone critical in the treatment of diabetes for its peripheral effects on blood glucose. However, in the last 50 years, insulin has entered the realm of neuroendocrinology and many studies have described its function on insulin receptors in the brain in relation to both metabolic and mood disorders. Indeed, rodent models of impaired insulin signalling show signs of dysregulated energy and glucose homeostasis, as well as anxiety-like and depressive behaviours. Importantly, many metabolic diseases such as obesity and diabetes increase the risk of developing mood disorders; however, the brain mechanisms underlying the connection between metabolism and mood remain unresolved. We present the current literature on the importance of the insulin receptor with respect to regulating glucose and energy homeostasis and mood-related behaviours. Specifically, we hypothesise that the insulin receptor in the hypothalamus, classically known as the homeostatic centre of the brain, plays a causal role in linking metabolic and behavioural effects of insulin signalling. In this review, we discuss insulin signalling in the hypothalamus as a critical point of neural integration controlling metabolism and mood.

6.
Front Neurosci ; 11: 24, 2017.
Article in English | MEDLINE | ID: mdl-28194094

ABSTRACT

Most studies that measure food intake in mice do so in the home cage environment. This necessarily means that mice do not engage in food seeking before consumption, a behavior that is ubiquitous in free-living animals. We modified and validated several commonly used anxiety tests to include a palatable food reward within the anxiogenic zone. This allowed us to assess risk-taking behavior in food seeking in mice in response to different metabolic stimuli. We modified the open field test and the light/dark box by placing palatable peanut butter chips within a designated food zone inside the anxiogenic zone of each apparatus. We then assessed parameters of the interaction with the food reward. Fasted mice or mice treated with ghrelin showed increased consumption and increased time spent in the food zone immediately around the food reward compared to ad libitum fed mice or mice treated with saline. However, fasted mice treated with IP glucose before exposure to the behavioral arena showed reduced time in the food zone compared to fasted controls, indicating that acute metabolic signals can modify the assessment of safety in food seeking in a risky environment. The tests described in this study will be useful in assessing risk processing and incentive salience of food reward, which are intrinsic components of food acquisition outside of the laboratory environment, in a range of genetic and pharmacological models.

SELECTION OF CITATIONS
SEARCH DETAIL
...