Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Vaccine Immunol ; 19(11): 1765-75, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22956657

ABSTRACT

Appropriate animal models are required to test medical countermeasures to bioterrorist threats. To that end, we characterized a nonhuman primate (NHP) inhalational anthrax therapeutic model for use in testing anthrax therapeutic medical countermeasures according to the U.S. Food and Drug Administration Animal Rule. A clinical profile was recorded for each NHP exposed to a lethal dose of Bacillus anthracis Ames spores. Specific diagnostic parameters were detected relatively early in disease progression, i.e., by blood culture (∼37 h postchallenge) and the presence of circulating protective antigen (PA) detected by electrochemiluminescence (ECL) ∼38 h postchallenge, whereas nonspecific clinical signs of disease, i.e., changes in body temperature, hematologic parameters (ca. 52 to 66 h), and clinical observations, were delayed. To determine whether the presentation of antigenemia (PA in the blood) was an appropriate trigger for therapeutic intervention, a monoclonal antibody specific for PA was administered to 12 additional animals after the circulating levels of PA were detected by ECL. Seventy-five percent of the monoclonal antibody-treated animals survived compared to 17% of the untreated controls, suggesting that intervention at the onset of antigenemia is an appropriate treatment trigger for this model. Moreover, the onset of antigenemia correlated with bacteremia, and NHPs were treated in a therapeutic manner. Interestingly, brain lesions were observed by histopathology in the treated nonsurviving animals, whereas this observation was absent from 90% of the nonsurviving untreated animals. Our results support the use of the cynomolgus macaque as an appropriate therapeutic animal model for assessing the efficacy of medical countermeasures developed against anthrax when administered after a confirmation of infection.


Subject(s)
Anthrax/pathology , Anthrax/therapy , Disease Models, Animal , Primate Diseases/pathology , Primate Diseases/therapy , Respiratory Tract Infections/pathology , Respiratory Tract Infections/therapy , Animals , Anthrax/diagnosis , Antibodies, Bacterial/administration & dosage , Antibodies, Monoclonal/administration & dosage , Antigens, Bacterial/blood , Bacterial Toxins/blood , Biomarkers/blood , Brain/pathology , Female , Guideline Adherence , Macaca fascicularis , Male , Primate Diseases/diagnosis , Respiratory Tract Infections/diagnosis , Survival Analysis , Time Factors , United States , United States Food and Drug Administration
2.
Clin Vaccine Immunol ; 19(9): 1517-25, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22837095

ABSTRACT

The development of an appropriate animal therapeutic model is essential to assess the potential efficacy of therapeutics for use in the event of a Bacillus anthracis exposure. We conducted a natural history study that showed New Zealand White rabbits exhibited a significant increase in body temperature (SIBT), changes in hematologic parameters, and increases in C-reactive protein and succumbed to disease with an average time to death of approximately 73 h following aerosol challenge with B. anthracis Ames spores. The SIBT was used as a trigger to treat with a fully human monoclonal antibody directed at protective antigen (PA). Ninety percent (9/10) of the treated rabbits survived the lethal inhalational challenge of B. anthracis. Further characterization investigated the protective window of opportunity for anti-PA antibody administration up to 12 h post-onset of SIBT. Eighty-three percent (5/6) of the rabbits treated at SIBT and 100% (6/6) of those treated at 6 h after SIBT survived challenge. Only 67% (4/6) of the rabbits treated at 12 h after SIBT survived. The increase in body temperature corresponded with both bacteremia and antigenemia (PA in the blood), indicating that SIBT is a suitable trigger to initiate treatment in a therapeutic model of inhalational anthrax.


Subject(s)
Anthrax/pathology , Anthrax/therapy , Bacillus anthracis/pathogenicity , Biomarkers , Fever/diagnosis , Animals , Antibodies, Bacterial/administration & dosage , Antibodies, Monoclonal/administration & dosage , Antigens, Bacterial , Bacterial Toxins/antagonists & inhibitors , Blood Cells/physiology , C-Reactive Protein/analysis , Disease Models, Animal , Female , Immunotherapy/methods , Male , Rabbits , Survival Analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...