Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 70(1): 319-332, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34967606

ABSTRACT

The most widely used whey protein ingredient in an infant formula (IF) is the whey protein concentrate (WPC). The processing steps used in the manufacturing of both a powdered IF and a WPC introduce protein modifications that may decrease the nutritional quality. A gently processed whey protein ingredient (serum protein concentrate; SPC) was manufactured and used for the production of a powdered IF. The SPC and the SPC-based IF were compared to the WPC and the powdered WPC-based IF. Structural protein modifications were evaluated, and Maillard reaction products, covering furosine, α-dicarbonyls, furans, and advanced glycation end products, were quantified in the IFs and their protein ingredients. IF processing was responsible for higher levels of protein modifications compared to the levels observed in the SPC and WPC. Furosine levels and aggregation were most pronounced in the WPC, but the SPC contained a high level of methylglyoxal, revealing that other processing factors should be considered in addition to thermal processing.


Subject(s)
Infant Formula , Maillard Reaction , Humans , Powders , Whey Proteins
2.
Food Chem ; 348: 129145, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-33524693

ABSTRACT

Protein modifications in liquid infant formula (IF) have been widely studied, but distinguishing between heat- and storage-induced structural changes remains challenging. A generic liquid IF was subjected to direct or indirect UHT treatment and stored at 40 °C up to 180 days. Colour and pH were monitored and structural changes were characterised by dynamic light scattering, SDS-PAGE and centrifugal field-flow fractionation (FFF) coupled with multi-angle light scattering (MALS) and UV detectors to evaluate whether heat-induced differences would level out during storage. Both direct- and indirect UHT treatment led to structural changes, where the higher heat load of the indirect UHT treatment caused more pronounced changes. Indications were that storage-induced changes in pH, browning and non-reducible cross-links were not dependent on UHT treatment. However, FFF-MALS-UV analysis allowed characterisation of complex aggregates, where structural changes continued to be most pronounced in indirect UHT treated samples, and different storage-induced aggregation behaviour was observed.


Subject(s)
Food Storage/methods , Infant Formula/analysis , Animals , Chromatography, High Pressure Liquid , Color , Dynamic Light Scattering , Fractionation, Field Flow , Hot Temperature , Humans , Hydrogen-Ion Concentration , Infant , Milk/chemistry , Milk/metabolism , Milk Proteins/analysis , Spectrophotometry, Ultraviolet
3.
J Agric Food Chem ; 68(11): 3568-3575, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32065525

ABSTRACT

Lactose-hydrolyzed (LH) ultrahigh temperature (UHT) processed milk is more prone to Maillard reactions and formation of advanced glycation end products (AGEs) during processing and storage than conventional (CON) UHT milk because of the presence of free galactose and glucose. Commercially available ß-d-galactosidases with transgalactosylating activity can incorporate galactose into galactooligosaccharides (GOSs) and potentially limit Maillard reactions in this lactose-reduced GOS-containing milk. The aim of this study was to examine the extent of Maillard reactions in a lactose-reduced GOS milk compared to LH and CON milk after UHT processing. The GOS milk had significant lower levels of lysine- and arginine-derived AGEs compared to LH milk, while their concentrations were similar to those found in CON milk. The total concentration of measured Arg-derived AGEs was similar to the total concentration of Lys-derived AGEs in the three types of milk, indicating that Arg is an important source of AGEs in milks. Interestingly, the GOS milk generated threefold higher concentrations (up to 330 ± 6 µM) of 3-deoxyglucosone (3-DG, a C6 α-dicarbonyl). These results demonstrate that GOS milk could be a potential alternative for LH milk for lactose-intolerant individuals, although further studies are needed to understand the increased formation of 3-DG in GOS-containing milk.


Subject(s)
Lactose , Milk , Animals , Galactose , Humans , Maillard Reaction , Temperature
4.
J Agric Food Chem ; 67(46): 12863-12874, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31670949

ABSTRACT

A comprehensive quantitative characterization of Maillard reaction products was carried out for conventional (CON) and lactose-hydrolyzed (LH) ultrahigh temperature (UHT) milk during storage at 20, 30, and 40 °C for 1 year. The accumulation of 3-deoxyglucosone (3-DG) and 3-deoxygalactosone (3-DGal) in LH-UHT milk ranged from 20-fold (at 20 °C) to 44-fold (at 40 °C) higher than that in CON-UHT milk. High temperature storage (40 °C) significantly accelerated the accumulation of 3-DG, 3-DGal, and 5-hydroxymethyl furfural but not the majority of the analyzed advanced glycation endproducts (AGEs). The concentrations of major AGEs including N-ε-carboxymethyllysine (CML), N-ε-carboxyethyllysine (CEL), methylglyoxal-hydroimidazolone isomers (MG-H1/H3), glyoxal-hydroimidazolone isomers (G-H1/H3), and G-H2 detected in CON milk during storage were in the range 12-700, 1-14, 8-45, 4-13, and 1-30 µM, respectively, while they were 30-570, 2-88, 17-150, 9-20, and 5-34 µM, respectively, in LH milk. Pyrraline, S-(carboxymethyl)cysteine (CMC), and glyoxal-lysine dimer were detected in lower levels, while MG-H2, methylglyoxal-lysine dimer, argpyrimidine, glyoxal-lysine-amide, glycolic acid-lysine-amide, and pentosidine were not detected in any of the milk samples. This work demonstrates for the first time that five of the analyzed AGEs (CML, CEL, MG-H1/H3, G-H1/H3, and G-H2) could be selected as markers for evaluation of the extent of the Maillard reaction in UHT milk. These results contribute to a better understanding of how Maillard reactions progress during storage of UHT milk and can be used to develop strategies to inhibit Maillard reactions in LH milk.


Subject(s)
Glycation End Products, Advanced/analysis , Lactose/chemistry , Milk/chemistry , Animals , Cattle , Deoxyglucose/analogs & derivatives , Deoxyglucose/analysis , Food Storage , Galactose/analogs & derivatives , Galactose/analysis , Isomerism , Lysine/analogs & derivatives , Lysine/analysis , Maillard Reaction , Pyruvaldehyde/analysis , Temperature
5.
J Agric Food Chem ; 67(22): 6350-6358, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31083944

ABSTRACT

α-Dicarbonyls are reactive intermediates formed during Maillard reactions and carbohydrate degradation. The formation of seven α-dicarbonyls was characterized in solutions containing dairy related carbohydrates (galactose, glucose, lactose, and galacto-oligosaccharides (GOS)) during incubations at 40 and 50 °C with and without Nα-acetyl-l-lysine at pH 6.8 for up to 2 months. The concentrations of α-dicarbonyls in samples of monosaccharides with Nα-acetyl-l-lysine were found to be 3-deoxyglucosone (3-DG) > 3-deoxygalactosone (3-DGal) > glyoxal > glucosone, galactosone > methylglyoxal > diacetyl. The presence of Nα-acetyl-l-lysine resulted in up to 100-fold higher concentrations of C6 α-dicarbonyls but lesser formation of glyoxal in the monosaccharide-containing models compared to what was observed in the absence of Nα-acetyl-l-lysine. Galactose incubated with Nα-acetyl-l-lysine generated the highest concentrations of 3-DGal (up to 130 µM), glyoxal (up to 100 µM), and methylglyoxal (up to 9 µM) compared to the other carbohydrates during incubation. Surprisingly, 3-DG (1500 µM) and 3-DGal (80 µM) were formed at levels of 2 orders of magnitude higher in solutions of GOS in the absence of Nα-acetyl-l-lysine as compared to the other carbohydrates at 40 °C, while GOS generated the lowest levels of glyoxal. GOS are widely used as an ingredient in various types of foods products, and it is therefore of importance to consider the risk of generating high levels of the reactive C6 α-dicarbonyl, 3-DG, in these types of products. This study contributes to the understanding of major α-dicarbonyl formation as affected by the presence of primary amines in GOS-, lactose-, and galactose-containing solutions under moderate heating in liquid foods.


Subject(s)
Galactose/chemistry , Glucose/chemistry , Glyoxal/chemistry , Lactose/chemistry , Lysine/chemistry , Milk/chemistry , Oligosaccharides/chemistry , Animals , Cattle , Dairy Products/analysis , Hot Temperature , Maillard Reaction , Oxidation-Reduction , Pyruvaldehyde/chemistry
6.
J Agric Food Chem ; 65(48): 10550-10561, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29119790

ABSTRACT

The effect of epigallocatechin gallate enriched green tea extract (GTE) on flavor, Maillard reactions and protein modifications in lactose-hydrolyzed (LH) ultrahigh temperature (UHT) processed milk was examined during storage at 40 °C for up to 42 days. Addition of GTE inhibited the formation of Strecker aldehydes by up to 95% compared to control milk, and the effect was similar when GTE was added either before or after UHT treatment. Release of free amino acids, caused by proteolysis, during storage was also decreased in GTE-added milk either before or after UHT treatment compared to control milk. Binding of polyphenols to milk proteins was observed in both fresh and stored milk samples. The inhibition of Strecker aldehyde formation by GTE may be explained by two different mechanisms; inhibition of proteolysis during storage by GTE or binding of amino acids and proteins to the GTE polyphenols.


Subject(s)
Aldehydes/chemistry , Camellia sinensis/chemistry , Lactose/chemistry , Milk Proteins/chemistry , Milk/chemistry , Plant Preparations/chemistry , Polyphenols/chemistry , Animals , Catechin/analogs & derivatives , Cattle , Food Additives/chemistry , Food Handling , Hydrolysis , Maillard Reaction , Protein Binding , Tea/chemistry , Temperature
7.
J Agric Food Chem ; 65(23): 4537-4552, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28535048

ABSTRACT

Maillard reactions lead to changes in food color, organoleptic properties, protein functionality, and protein digestibility. Numerous different strategies for controlling Maillard reactions in foods have been attempted during the past decades. In this paper, recent advances in strategies for controlling the Maillard reaction and subsequent downstream reaction products in food systems are critically reviewed. The underlying mechanisms at play are presented, strengths and weaknesses of each strategy are discussed, and reasonable reaction mechanisms are proposed to reinforce the evaluations. The review includes strategies involving addition of functional ingredients, such as plant polyphenols and vitamins, as well as enzymes. The resulting trapping or modification of Maillard targets, reactive intermediates, and advanced glycation endproducts (AGEs) are presented with their potential unwanted side effects. Finally, recent advances in processing for control of Maillard reactions are discussed.


Subject(s)
Food Analysis , Food Technology , Hot Temperature , Humans , Maillard Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...