Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 542, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35087038

ABSTRACT

Excitons play a dominant role in the optoelectronic properties of atomically thin van der Waals (vdW) semiconductors. These excitons are amenable to on-demand engineering with diverse control knobs, including dielectric screening, interlayer hybridization, and moiré potentials. However, external stimuli frequently yield heterogeneous excitonic responses at the nano- and meso-scales, making their spatial characterization with conventional diffraction-limited optics a formidable task. Here, we use a scattering-type scanning near-field optical microscope (s-SNOM) to acquire exciton spectra in atomically thin transition metal dichalcogenide microcrystals with previously unattainable 20 nm resolution. Our nano-optical data revealed material- and stacking-dependent exciton spectra of MoSe2, WSe2, and their heterostructures. Furthermore, we extracted the complex dielectric function of these prototypical vdW semiconductors. s-SNOM hyperspectral images uncovered how the dielectric screening modifies excitons at length scales as short as few nanometers. This work paves the way towards understanding and manipulation of excitons in atomically thin layers at the nanoscale.

2.
Nat Nanotechnol ; 15(3): 212-216, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31907441

ABSTRACT

The coupling between spin and charge degrees of freedom in a crystal gives rise to magneto-optical effects with applications in the sensitive detection of local magnetic order, optical modulation and data storage. In two-dimensional magnets these effects manifest themselves in the large magneto-optical Kerr effect1,2, spontaneous helical light emission3,4 from ferromagnetic (FM) monolayers and electric-field induced Kerr rotation5-7 and giant second-order non-reciprocal optical effects8 in antiferromagnetic (AFM) bilayers. Here we demonstrate the tuning of inelastically scattered light through symmetry control in atomically thin chromium triiodide (CrI3). In monolayers, we found an extraordinarily large magneto-optical Raman effect from an A1g phonon mode due to the emergence of FM order. The linearly polarized, inelastically scattered light rotates by ~40°, more than two orders of magnitude larger than the rotation from the magneto-optical Kerr effect under the same experimental conditions. In CrI3 bilayers, the same phonon mode becomes Davydov-split into two modes of opposite parity, which exhibit divergent selection rules that depend on inversion symmetry and the underlying magnetic order. We demonstrate the magneto-electrical control over these selection rules by activating or suppressing Raman activity for the odd-parity phonon mode and the magneto-optical rotation of scattered light from the even-parity phonon mode. Our work underlines the unique opportunities provided by two-dimensional magnets to control the combined time-reversal and inversion symmetries to manipulate Raman optical selection rules and for exploring emergent magneto-optical effects and spin-phonon coupled physics.

3.
Nature ; 567(7746): 66-70, 2019 03.
Article in English | MEDLINE | ID: mdl-30804526

ABSTRACT

The formation of moiré patterns in crystalline solids can be used to manipulate their electronic properties, which are fundamentally influenced by periodic potential landscapes. In two-dimensional materials, a moiré pattern with a superlattice potential can be formed by vertically stacking two layered materials with a twist and/or a difference in lattice constant. This approach has led to electronic phenomena including the fractal quantum Hall effect1-3, tunable Mott insulators4,5 and unconventional superconductivity6. In addition, theory predicts that notable effects on optical excitations could result from a moiré potential in two-dimensional valley semiconductors7-9, but these signatures have not been detected experimentally. Here we report experimental evidence of interlayer valley excitons trapped in a moiré potential in molybdenum diselenide (MoSe2)/tungsten diselenide (WSe2) heterobilayers. At low temperatures, we observe photoluminescence close to the free interlayer exciton energy but with linewidths over one hundred times narrower (around 100 microelectronvolts). The emitter g-factors are homogeneous across the same sample and take only two values, -15.9 and 6.7, in samples with approximate twist angles of 60 degrees and 0 degrees, respectively. The g-factors match those of the free interlayer exciton, which is determined by one of two possible valley-pairing configurations. At twist angles of approximately 20 degrees the emitters become two orders of magnitude dimmer; however, they possess the same g-factor as the heterobilayer at a twist angle of approximately 60 degrees. This is consistent with the umklapp recombination of interlayer excitons near the commensurate 21.8-degree twist angle7. The emitters exhibit strong circular polarization of the same helicity for a given twist angle, which suggests that the trapping potential retains three-fold rotational symmetry. Together with a characteristic dependence on power and excitation energy, these results suggest that the origin of the observed effects is interlayer excitons trapped in a smooth moiré potential with inherited valley-contrasting physics. This work presents opportunities to control two-dimensional moiré optics through variation of the twist angle.

SELECTION OF CITATIONS
SEARCH DETAIL
...