Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 122(25): 250403, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31347894

ABSTRACT

Characterizing unknown quantum states and measurements is a fundamental problem in quantum information processing. In this Letter, we provide a novel scheme to self-test local quantum systems using noncontextuality inequalities. Our work leverages the graph-theoretic framework for contextuality introduced by Cabello, Severini, and Winter, combined with tools from mathematical optimization that guarantee the unicity of optimal solutions. As an application, we show that the celebrated Klyachko-Can-Binicioglu-Shumovsky inequality and its generalization to contextuality scenarios with odd n-cycle compatibility relations admit robust self-testing.

2.
Entropy (Basel) ; 21(2)2019 Feb 01.
Article in English | MEDLINE | ID: mdl-33266850

ABSTRACT

Quantum communication and quantum computation form the two crucial facets of quantum information theory. While entanglement and its manifestation as Bell non-locality have been proved to be vital for communication tasks, contextuality (a generalisation of Bell non-locality) has shown to be the crucial resource behind various models of quantum computation. The practical and fundamental aspects of these non-classical resources are still poorly understood despite decades of research. We explore non-classical correlations exhibited by some of these quantum as well as super-quantum resources in the n-cycle setting. In particular, we focus on correlations manifested by Kochen-Specker-Klyachko box (KS box), scenarios involving n-cycle non-contextuality inequalities and Popescu-Rohlrich boxes (PR box). We provide the criteria for optimal classical simulation of a KS box of arbitrary n dimension. The non-contextuality inequalities are analysed for n-cycle setting, and the condition for the quantum violation for odd as well as even n-cycle is discussed. We offer a simple extension of even cycle non-contextuality inequalities to the phase space case. Furthermore, we simulate a generalised PR box using KS box and provide some interesting insights. Towards the end, we discuss a few possible interesting open problems for future research. Our work connects generalised PR boxes, arbitrary dimensional KS boxes, and n-cycle non-contextuality inequalities and thus provides the pathway for the study of these contextual and nonlocal resources at their junction.

3.
Quantum Inf Process ; 17(6): 131, 2018.
Article in English | MEDLINE | ID: mdl-31007638

ABSTRACT

While fully device-independent security in (BB84-like) prepare-and-measure quantum key distribution (QKD) is impossible, it can be guaranteed against individual attacks in a semi-device-independent (SDI) scenario, wherein no assumptions are made on the characteristics of the hardware used except for an upper bound on the dimension of the communicated system. Studying security under such minimal assumptions is especially relevant in the context of the recent quantum hacking attacks wherein the eavesdroppers can not only construct the devices used by the communicating parties but are also able to remotely alter their behavior. In this work, we study the security of a SDIQKD protocol based on the prepare-and-measure quantum implementation of a well-known cryptographic primitive, the random access code (RAC). We consider imperfect detectors and establish the critical values of the security parameters (the observed success probability of the RAC and the detection efficiency) required for guaranteeing security against eavesdroppers with and without quantum memory. Furthermore, we suggest a minimal characterization of the preparation device in order to lower the requirements for establishing a secure key.

SELECTION OF CITATIONS
SEARCH DETAIL
...