Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 36(48): 14763-14771, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33232158

ABSTRACT

Inclusion of polymer additives is a known strategy to improve foam stability, but questions persist about the amount of polymer incorporated in the foam and the resulting structural changes that impact material performance. Here, we study these questions in sodium dodecyl sulfate (SDS)/hydroxypropyl methylcellulose (HPMC) foams using a combination of flow injection QTOF mass spectrometry and small-angle neutron scattering (SANS) measurements leveraging contrast matching. Mass spectrometry results demonstrate polymer incorporation and retention in the foam during drainage by measuring the HPMC-to-SDS ratio. The results confirm a ratio matching the parent solution and stability over the time of our measurements. The SANS measurements leverage precise contrast matching to reveal detailed descriptions of the micellar structure (size, shape, and aggregation number) along with the foam film thickness. The presence of HPMC leads to thicker films, correlating with increased foam stability over the first 15-20 min after foam production. Taken together, mass spectrometry and SANS present a structural and compositional picture of SDS/HPMC foams and an approach amenable to systematic study for foams, gathering mechanistic insights and providing formulation guidance for rational foam design.

2.
Biochim Biophys Acta Biomembr ; 1861(2): 403-409, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30465747

ABSTRACT

The superficial layer of the skin, the stratum corneum (SC), consists of corneocytes surrounded by lipid regions and acts as a protective barrier for the body against water loss, toxic agents and microorganisms. As most substances permeate the stratum corneum through the lipid regions, lipid organization is considered crucial for the skin barrier function. Here, we investigate the potential of in vivo confocal Raman spectroscopy to describe the composition and organization of the SC. Confocal Raman spectroscopy is finding increasing use in the characterization of skin in biomedical, pharmaceutical and cosmetic applications. In this work, we analyze the spectra using chemometric methods and obtain principal components that correspond to the primary skin constituents: protein (keratin), natural moisturizing factor (NMF), water and lipid contributions in both ordered (orthorhombic) and disordered structural organization. By identifying these important components of the SC, these results highlight the utility of this in vivo, non-invasive, and depth resolved tool at the forefront of skin research.


Subject(s)
Microscopy, Confocal/methods , Skin Physiological Phenomena , Skin/anatomy & histology , Spectrum Analysis, Raman/methods , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Middle Aged , Multivariate Analysis , Principal Component Analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...