Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Vaccine ; 24(17): 3564-73, 2006 Apr 24.
Article in English | MEDLINE | ID: mdl-16516358

ABSTRACT

HIV-1 Tat has been identified as an attractive target for vaccine development and is currently under investigation in clinical trials as both a therapeutic and preventative vaccine for HIV-1. It is well known that protein based vaccines produce poor immune responses by themselves and therefore require adjuvants to enhance immune responses. We have previously reported on the use of anionic nanoparticles (NPs) for enhancing cellular and humoral immune responses to Tat (1-72). The purpose of this study was to further evaluate the immune response of HIV-1 Tat (1-72) coated on anionic nanoparticles compared to alum using various doses of Tat (1-72). Nanoparticles were effective at generating comparable antibody titers at both 1 and 5 microg doses of Tat (1-72), whereas the antibody titers significantly decreased at the lower dose of Tat (1-72) using alum. Anti-sera from Tat (1-72) immunized mice reacted greatest to the N-terminal and basic regions of Tat, with the NP groups showing stronger reactivity to these regions compared to alum. Moreover, the anti-sera from all Tat (1-72) immunized groups contained Tat-neutralizing antibodies and were able to significantly inhibit Tat-mediated long terminal repeat (LTR) transactivation.


Subject(s)
Adjuvants, Immunologic/pharmacology , Alum Compounds/pharmacology , Gene Products, tat/immunology , HIV Antibodies/blood , Nanostructures , AIDS Vaccines/immunology , Animals , Dose-Response Relationship, Immunologic , Epitope Mapping , Female , HIV Long Terminal Repeat , Immunization , Mice , Mice, Inbred BALB C , Neutralization Tests , Transcriptional Activation
2.
Vaccine ; 22(20): 2631-40, 2004 Jun 30.
Article in English | MEDLINE | ID: mdl-15193389

ABSTRACT

A significant emphasis has been placed on the development of adjuvants and/or delivery systems to improve both antibody production and cell-mediated immune responses. We previously reported on a novel anionic nanoparticle, which led to enhanced humoral and T helper type-1 (Th1) biased immune responses in mice when coated with cationized model antigen. Tat (1-72) is a conserved regulatory HIV-1 protein. It was hypothesized that HIV vaccine strategies employing Tat (1-72) may be a promising approach. Although previous reports have suggested that Tat (1-86) may be immunosuppressive, it was demonstrated in this present study that Tat (1-72) was not immunosuppressive when co-administered to mice with ovalbumin (OVA). Tat (1-72) was coated on novel anionic nanoparticles. BALB/c mice were immunized with Tat (5 microg)-coated nanoparticles (15 microg) by subcutaneous injection on days 0 and 14. Antibody and cytokine release were determined on day 28 and compared to Tat (5 microg) adjuvanted with Alum (15 microg) as a Th2 control, Tat (5 microg) adjuvanted with Lipid A (50 microg) as a Th1 control. Immunization of BALB/c mice with Tat-coated nanoparticles resulted in antibody levels (IgG and IgM) comparable to those elicited from Tat and Alum. However, Tat-coated nanoparticles led to a Th1 biased immune response. The IFN-gamma release from splenocytes with Tat-coated nanoparticles was comparable to that from mice immunized with Tat and Lipid A, and 3.3-fold greater than that from mice immunized with Tat and Alum. These studies warrant further investigation of these nanoparticles to enhance both antibody and cellular-based immune responses.


Subject(s)
AIDS Vaccines/immunology , T-Lymphocytes/immunology , Animals , Animals, Genetically Modified , Immunoglobulin G/blood , Immunoglobulin M/blood , Mice , Mice, Inbred BALB C , Nanotechnology , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL