Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Rev Anal Chem ; : 1-27, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38133962

ABSTRACT

The advent of biosensors has tremendously increased our potential of identifying and solving important problems in various domains, ranging from food safety and environmental analysis, to healthcare and medicine. However, one of the most prominent drawbacks of these technologies, especially in the biomedical field, is to employ conventional samples, such as blood, urine, tissue extracts and other body fluids for analysis, which suffer from the drawbacks of invasiveness, discomfort, and high costs encountered in transportation and storage, thereby hindering these products to be applied for point-of-care testing that has garnered substantial attention in recent years. Therefore, through this review, we emphasize for the first time, the applications of switching over to noninvasive sampling techniques involving hair and nails that not only circumvent most of the aforementioned limitations, but also serve as interesting alternatives in understanding the human physiology involving minimal costs, equipment and human interference when combined with rapidly advancing technologies, such as microfluidics and organ-on-a-chip to achieve miniaturization on an unprecedented scale. The coalescence between these two fields has not only led to the fabrication of novel microdevices involving hair and nails, but also function as robust biosensors for the detection of biomarkers, chemicals, metabolites and nucleic acids through noninvasive sampling. Finally, we have also elucidated a plethora of futuristic innovations that could be incorporated in such devices, such as expanding their applications in nail and hair-based drug delivery, their potential in serving as next-generation wearable sensors and integrating these devices with machine-learning for enhanced automation and decentralization.

2.
Food Chem ; 403: 134484, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36358086

ABSTRACT

Herein, we present for the first time, the employment of paper-based devices for rapidly differentiating original country eggs from the plain broiler eggs that have been coated with tea to appear as the former. The devices leverage two types of phenomena involving the phenols present in tea in precisely 5 min, namely precipitation, which produces a well-defined dark bluish precipitate on the surface of the counterfeit country eggs or tea-coated broiler eggs and de-coloration, wherein the dried layer of tea coating present on the surface of the dummy country eggs get dissolved, thereby revealing the white colour of the plain broiler egg shell. To reduce the subjectivity, a smartphone application 'Eggo' has been developed which is capable of detecting the spots produced by both the methods using mobile's camera. Fourier Transform Infrared Spectroscopy (FTIR) analysis was performed to study the changes occurring on the shell surface. Such sophisticated yet simple technologies will revolutionize food fraud analysis.


Subject(s)
Chickens , Smartphone , Animals , Eggs , Egg Shell/chemistry , Tea
3.
Life (Basel) ; 14(1)2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38255653

ABSTRACT

This hypothesis demonstrates that the efficiency of loop-mediated isothermal amplification (LAMP) for nucleic acid detection can be positively influenced by the preconcentration of microbial cells onto hydrophobic paper surfaces. The mechanism of this model is based on the high affinity of microbes towards hydrophobic surfaces. Extensive studies have demonstrated that hydrophobic surfaces exhibit enhanced bacterial and fungal adhesion. By exploiting this inherent affinity of hydrophobic paper substrates, the preconcentration approach enables the adherence of a greater number of target cells, resulting in a higher concentration of target templates for amplification directly from urine samples. In contrast to conventional methods, which often involve complex procedures, this approach offers a simpler, cost-effective, and user-friendly alternative. Moreover, the integration of cell adhesion, LAMP amplification, and signal readout within paper origami-based devices can provide a portable, robust, and highly efficient platform for rapid nucleic acid detection. This innovative hypothesis holds significant potential for point-of-care (POC) diagnostics and field surveillance applications. Further research and development in this field will advance the implementation of this technology, contributing to improved healthcare systems and public health outcomes.

4.
Food Chem ; 390: 133173, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35594772

ABSTRACT

Analytical sciences have witnessed emergent techniques for efficient clinical and industrial food adulterants detection. In this review, the contributions made by the paper-based devices are highlighted for efficient and rapid detection of food adulterants and additives, which is the need of the hour and how different categories of techniques have been developed in the past decade for upgrading the performance for point-of-care testing. A simple strategy with an arrangement for detecting specific adulterants followed by the addition of samples to obtain well-defined qualitative or quantitative signals for confirming the presence of target species. The paper-based microfluidics-based technology advances and prospects for food adulterant detection are discussed given the high-demand from the food sectors and serve as a valued technology for food researchers working in interdisciplinary technological frontiers.


Subject(s)
Lab-On-A-Chip Devices , Microfluidic Analytical Techniques , Cost-Benefit Analysis , Microfluidics , Paper
SELECTION OF CITATIONS
SEARCH DETAIL
...