Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
iScience ; 24(4): 102361, 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33870146

ABSTRACT

With the development of transcriptomic technologies, we are able to quantify precise changes in gene expression profiles from astronauts and other organisms exposed to spaceflight. Members of NASA GeneLab and GeneLab-associated analysis working groups (AWGs) have developed a consensus pipeline for analyzing short-read RNA-sequencing data from spaceflight-associated experiments. The pipeline includes quality control, read trimming, mapping, and gene quantification steps, culminating in the detection of differentially expressed genes. This data analysis pipeline and the results of its execution using data submitted to GeneLab are now all publicly available through the GeneLab database. We present here the full details and rationale for the construction of this pipeline in order to promote transparency, reproducibility, and reusability of pipeline data; to provide a template for data processing of future spaceflight-relevant datasets; and to encourage cross-analysis of data from other databases with the data available in GeneLab.

2.
iScience ; 23(12): 101733, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33376967

ABSTRACT

To understand the physiological changes that occur in response to spaceflight, mice are transported to the International Space Station (ISS) and housed for variable periods of time before euthanasia on-orbit or return to Earth. Sample collection under such difficult conditions introduces confounding factors that need to be identified and addressed. We found large changes in the transcriptome of mouse tissues dissected and preserved on-orbit compared with tissues from mice euthanized on-orbit, preserved, and dissected after return to Earth. Changes due to preservation method eclipsed those between flight and ground samples, making it difficult to identify spaceflight-specific changes. Follow-on experiments to interrogate the roles of euthanasia methods, tissue and carcass preservation protocols, and library preparation methods suggested that differences due to preservation protocols are exacerbated when coupled with polyA selection. This has important implications for the interpretation of existing datasets and the design of future experiments.

3.
Nucleic Acid Ther ; 29(5): 266-277, 2019 10.
Article in English | MEDLINE | ID: mdl-31368839

ABSTRACT

Although antisense oligonucleotides (ASOs) are well tolerated preclinically and in the clinic, some sequences of ASOs can trigger an inflammatory response leading to B cell and macrophage activation in rodents. This prompted our investigation into the contribution of genetic architecture to the ASO-mediated inflammatory response. Genome-wide association (GWA) and transcriptomic analysis in a hybrid mouse diversity panel (HMDP) were used to identify and validate novel genes involved in the acute and delayed inflammatory response to a single 75 mg/kg dose of an inflammatory 2'-O-methoxyethyl (2'MOE) modified ASO. The acute response was measured 6 h after ASO administration, via evaluation for increased plasma production of interleukin 6 (IL6), IL10, monocyte chemoattractant protein 1 (MCP-1) and macrophage inflammatory protein-1ß (MIP-1ß). Delayed inflammation was evaluated by spleen weight increases after 96 h. We identified single nucleotide polymorphisms (SNPs) on chromosomes 16 and 17 associated with plasma MIP-1ß, IL6, and MCP-1 levels, and one on chromosome 8 associated with increases in spleen weight. Systems genetic analysis utilizing transcriptomic data from HMDP strain macrophages determined that the acute inflammatory SNPs were expression quantitative trait locis (eQTLs) for CCAAT/enhancer-binding protein beta (Cebpb) and salt inducible kinase 1 (Sik1). The delayed inflammatory SNP was an eQTL for Rho guanine nucleotide exchange factor 10 (Arhgef10). In vitro assays in mouse primary cells and human cell lines have confirmed the HMDP finding that lower Sik1 expression increases the acute inflammatory response. Our results demonstrate the utility of using mouse GWA study (GWAS) and the HMDP for detecting genes modulating the inflammatory response to pro-inflammatory ASOs in a pharmacological setting.


Subject(s)
Genetic Predisposition to Disease , Inflammation/therapy , Oligonucleotides, Antisense/pharmacology , Transcriptome/genetics , Animals , CCAAT-Enhancer-Binding Protein-beta/genetics , Cell Line , Chemokine CCL2/genetics , Chemokine CCL4/genetics , Gene Expression Profiling/methods , Genome-Wide Association Study/methods , Humans , Inflammation/genetics , Inflammation/pathology , Mice , Polymorphism, Single Nucleotide/genetics , Protein Serine-Threonine Kinases/genetics
4.
Bioinformatics ; 35(10): 1753-1759, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30329036

ABSTRACT

MOTIVATION: To curate and organize expensive spaceflight experiments conducted aboard space stations and maximize the scientific return of investment, while democratizing access to vast amounts of spaceflight related omics data generated from several model organisms. RESULTS: The GeneLab Data System (GLDS) is an open access database containing fully coordinated and curated 'omics' (genomics, transcriptomics, proteomics, metabolomics) data, detailed metadata and radiation dosimetry for a variety of model organisms. GLDS is supported by an integrated data system allowing federated search across several public bioinformatics repositories. Archived datasets can be queried using full-text search (e.g. keywords, Boolean and wildcards) and results can be sorted in multifactorial manner using assistive filters. GLDS also provides a collaborative platform built on GenomeSpace for sharing files and analyses with collaborators. It currently houses 172 datasets and supports standard guidelines for submission of datasets, MIAME (for microarray), ENCODE Consortium Guidelines (for RNA-seq) and MIAPE Guidelines (for proteomics). AVAILABILITY AND IMPLEMENTATION: https://genelab.nasa.gov/.


Subject(s)
Space Flight , Computational Biology , Databases, Factual , Genomics
5.
PLoS Genet ; 14(10): e1007732, 2018 10.
Article in English | MEDLINE | ID: mdl-30372444

ABSTRACT

Antisense oligonucleotides (ASOs) have demonstrated variation of efficacy in patient populations. This has prompted our investigation into the contribution of genetic architecture to ASO pharmacokinetics (PK) and pharmacodynamics (PD). Genome wide association (GWA) and transcriptomic analysis in a hybrid mouse diversity panel (HMDP) were used to identify and validate novel genes involved in the uptake and efficacy of a single dose of a Malat1 constrained ethyl (cEt) modified ASO. The GWA of the HMDP identified two significant associations on chromosomes 4 and 10 with hepatic Malat1 ASO concentrations. Stabilin 2 (Stab2) and vesicle associated membrane protein 3 (Vamp3) were identified by cis-eQTL analysis. HMDP strains with lower Stab2 expression and Stab2 KO mice displayed significantly lower PK than strains with higher Stab2 expression and the wild type (WT) animals respectively, confirming the role of Stab2 in regulating hepatic Malat1 ASO uptake. GWA examining ASO efficacy uncovered three loci associated with Malat1 potency: Small Subunit Processome Component (Utp11l) on chromosome 4, Rho associated coiled-coil containing protein kinase 2 (Rock2) and Aci-reductone dioxygenase (Adi1) on chromosome 12. Our results demonstrate the utility of mouse GWAS using the HMDP in detecting genes capable of impacting the uptake of ASOs, and identifies genes critical for the activity of ASOs in vivo.


Subject(s)
Oligonucleotides, Antisense/pharmacokinetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/physiology , Animals , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Gene Expression Profiling/methods , Genetic Variation , Genome-Wide Association Study , Liver/metabolism , Mice , Mice, Knockout , Oligonucleotides, Antisense/genetics , RNA, Messenger/metabolism , Vesicle-Associated Membrane Protein 3/genetics , Vesicle-Associated Membrane Protein 3/metabolism
6.
PLoS One ; 13(7): e0199621, 2018.
Article in English | MEDLINE | ID: mdl-30044882

ABSTRACT

Translating fundamental biological discoveries from NASA Space Biology program into health risk from space flights has been an ongoing challenge. We propose to use NASA GeneLab database to gain new knowledge on potential systemic responses to space. Unbiased systems biology analysis of transcriptomic data from seven different rodent datasets reveals for the first time the existence of potential "master regulators" coordinating a systemic response to microgravity and/or space radiation with TGF-ß1 being the most common regulator. We hypothesized the space environment leads to the release of biomolecules circulating inside the blood stream. Through datamining we identified 13 candidate microRNAs (miRNA) which are common in all studies and directly interact with TGF-ß1 that can be potential circulating factors impacting space biology. This study exemplifies the utility of the GeneLab data repository to aid in the process of performing novel hypothesis-based research.


Subject(s)
Gene Expression Regulation , MicroRNAs/genetics , Space Flight , Transcriptome , Transforming Growth Factor beta1/metabolism , Animals , Biomarkers , Gene Expression Profiling , Gene Expression Regulation/drug effects , Gene Regulatory Networks , Humans , Mice , Rats , Risk Assessment , Transforming Growth Factor beta1/pharmacology , Weightlessness
7.
Int J Part Ther ; 5(1): 15-24, 2018.
Article in English | MEDLINE | ID: mdl-31773017

ABSTRACT

Treatment modalities for cancer radiation therapy have become increasingly diversified given the growing number of facilities providing proton and carbon-ion therapy in addition to the more historically accepted photon therapy. An understanding of high-LET radiobiology is critical for optimization of charged particle radiation therapy and potential DNA damage response. In this review, we present a comprehensive summary and comparison of these types of therapy monitored primarily by using DNA damage biomarkers. We focus on their relative profiles of dose distribution and mechanisms of action from the level of nucleic acid to tumor cell death.

8.
Article in English | MEDLINE | ID: mdl-27070978

ABSTRACT

This study considers the problem of describing and predicting cleft formation during the early stages of branching morphogenesis in mouse submandibular salivary glands (SMG) under the influence of varied concentrations of epidermal growth factors (EGF). Given a time-lapse video of a growing SMG, first we build a descriptive model that captures the underlying biological process and quantifies the ground truth. Tissue-scale (global) and morphological features related to regions of interest (local features) are used to characterize the biological ground truth. Second, we devise a predictive growth model that simulates EGF-modulated branching morphogenesis using a dynamic graph algorithm, which is driven by biological parameters such as EGF concentration, mitosis rate, and cleft progression rate. Given the initial configuration of the SMG, the evolution of the dynamic graph predicts the cleft formation, while maintaining the local structural characteristics of the SMG. We determined that higher EGF concentrations cause the formation of higher number of buds and comparatively shallow cleft depths. Third, we compared the prediction accuracy of our model to the Glazier-Graner-Hogeweg (GGH) model, an on-lattice Monte-Carlo simulation model, under a specific energy function parameter set that allows new rounds of de novo cleft formation. The results demonstrate that the dynamic graph model yields comparable simulations of gland growth to that of the GGH model with a significantly lower computational complexity. Fourth, we enhanced this model to predict the SMG morphology for an EGF concentration without the assistance of a ground truth time-lapse biological video data; this is a substantial benefit of our model over other similar models that are guided and terminated by information regarding the final SMG morphology. Hence, our model is suitable for testing the impact of different biological parameters involved with the process of branching morphogenesis in silico, while reducing the requirement of in vivo experiments.


Subject(s)
Models, Biological , Models, Statistical , Morphogenesis/physiology , Systems Biology/methods , Unsupervised Machine Learning , Animals , Female , Mice , Monte Carlo Method , Salivary Glands/growth & development
9.
Mol Biol Cell ; 25(16): 2393-407, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24966172

ABSTRACT

Coordinated actin microfilament and microtubule dynamics is required for salivary gland development, although the mechanisms by which they contribute to branching morphogenesis are not defined. Because LIM kinase (LIMK) regulates both actin and microtubule organization, we investigated the role of LIMK signaling in mouse embryonic submandibular salivary glands using ex vivo organ cultures. Both LIMK 1 and 2 were necessary for branching morphogenesis and functioned to promote epithelial early- and late-stage cleft progression through regulation of both microfilaments and microtubules. LIMK-dependent regulation of these cytoskeletal systems was required to control focal adhesion protein-dependent fibronectin assembly and integrin ß1 activation, involving the LIMK effectors cofilin and TPPP/p25, for assembly of the actin- and tubulin-based cytoskeletal systems, respectively. We demonstrate that LIMK regulates the early stages of cleft formation--cleft initiation, stabilization, and progression--via establishment of actin stability. Further, we reveal a novel role for the microtubule assembly factor p25 in regulating stabilization and elongation of late-stage progressing clefts. This study demonstrates the existence of multiple actin- and microtubule-dependent stabilization steps that are controlled by LIMK and are required in cleft progression during branching morphogenesis.


Subject(s)
Actins/metabolism , Lim Kinases/metabolism , Microtubules/metabolism , Salivary Glands/embryology , Tubulin/metabolism , Animals , Fibronectins/metabolism , Integrin beta1/metabolism , Mice , Morphogenesis , Organ Culture Techniques , Organogenesis , Signal Transduction
10.
PLoS Comput Biol ; 9(11): e1003319, 2013.
Article in English | MEDLINE | ID: mdl-24277996

ABSTRACT

Cleft formation during submandibular salivary gland branching morphogenesis is the critical step initiating the growth and development of the complex adult organ. Previous experimental studies indicated requirements for several epithelial cellular processes, such as proliferation, migration, cell-cell adhesion, cell-extracellular matrix (matrix) adhesion, and cellular contraction in cleft formation; however, the relative contribution of each of these processes is not fully understood since it is not possible to experimentally manipulate each factor independently. We present here a comprehensive analysis of several cellular parameters regulating cleft progression during branching morphogenesis in the epithelial tissue of an early embryonic salivary gland at a local scale using an on lattice Monte-Carlo simulation model, the Glazier-Graner-Hogeweg model. We utilized measurements from time-lapse images of mouse submandibular gland organ explants to construct a temporally and spatially relevant cell-based 2D model. Our model simulates the effect of cellular proliferation, actomyosin contractility, cell-cell and cell-matrix adhesions on cleft progression, and it was used to test specific hypotheses regarding the function of these parameters in branching morphogenesis. We use innovative features capturing several aspects of cleft morphology and quantitatively analyze clefts formed during functional modification of the cellular parameters. Our simulations predict that a low epithelial mitosis rate and moderate level of actomyosin contractility in the cleft cells promote cleft progression. Raising or lowering levels of contractility and mitosis rate resulted in non-progressive clefts. We also show that lowered cell-cell adhesion in the cleft region and increased cleft cell-matrix adhesions are required for cleft progression. Using a classifier-based analysis, the relative importance of these four contributing cellular factors for effective cleft progression was determined as follows: cleft cell contractility, cleft region cell-cell adhesion strength, epithelial cell mitosis rate, and cell-matrix adhesion strength.


Subject(s)
Models, Biological , Morphogenesis/physiology , Submandibular Gland/embryology , Algorithms , Animals , Cell Adhesion , Embryo, Mammalian , Female , Mice , Monte Carlo Method
11.
J Vis Exp ; (71): e50060, 2013 Jan 28.
Article in English | MEDLINE | ID: mdl-23407326

ABSTRACT

Branching morphogenesis occurs during the development of many organs, and the embryonic mouse submandibular gland (SMG) is a classical model for the study of branching morphogenesis. In the developing SMG, this process involves iterative steps of epithelial bud and duct formation, to ultimately give rise to a complex branched network of acini and ducts, which serve to produce and modify/transport the saliva, respectively, into the oral cavity. The epithelial-associated basement membrane and aspects of the mesenchymal compartment, including the mesenchyme cells, growth factors and the extracellular matrix, produced by these cells, are critical to the branching mechanism, although how the cellular and molecular events are coordinated remains poorly understood. The study of the molecular mechanisms driving epithelial morphogenesis advances our understanding of developmental mechanisms and provides insight into possible regenerative medicine approaches. Such studies have been hampered due to the lack of effective methods for genetic manipulation of the salivary epithelium. Currently, adenoviral transduction represents the most effective method for targeting epithelial cells in adult glands in vivo. However, in embryonic explants, dense mesenchyme and the basement membrane surrounding the epithelial cells impedes viral access to the epithelial cells. If the mesenchyme is removed, the epithelium can be transfected using adenoviruses, and epithelial rudiments can resume branching morphogenesis in the presence of Matrigel or laminin-111. Mesenchyme-free epithelial rudiment growth also requires additional supplementation with soluble growth factors and does not fully recapitulate branching morphogenesis as it occurs in intact glands. Here we describe a technique which facilitates adenoviral transduction of epithelial cells and culture of the transfected epithelium with associated mesenchyme. Following microdissection of the embryonic SMGs, removal of the mesenchyme, and viral infection of the epithelium with a GFP-containing adenovirus, we show that the epithelium spontaneously recombines with uninfected mesenchyme, recapitulating intact SMG glandular structure and branching morphogenesis. The genetically modified epithelial cell population can be easily monitored using standard fluorescence microscopy methods, if fluorescently-tagged adenoviral constructs are used. The tissue recombination method described here is currently the most effective and accessible method for transfection of epithelial cells with a wild-type or mutant vector within a complex 3D tissue construct that does not require generation of transgenic animals.


Subject(s)
Organ Culture Techniques/methods , Submandibular Gland/physiology , Transfection/methods , Adenoviridae/genetics , Animals , Epithelial Cells/physiology , Female , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Mice , Microdissection/methods , Pregnancy
12.
PLoS One ; 7(3): e32906, 2012.
Article in English | MEDLINE | ID: mdl-22403724

ABSTRACT

Pattern formation in developing tissues involves dynamic spatio-temporal changes in cellular organization and subsequent evolution of functional adult structures. Branching morphogenesis is a developmental mechanism by which patterns are generated in many developing organs, which is controlled by underlying molecular pathways. Understanding the relationship between molecular signaling, cellular behavior and resulting morphological change requires quantification and categorization of the cellular behavior. In this study, tissue-level and cellular changes in developing salivary gland in response to disruption of ROCK-mediated signaling by are modeled by building cell-graphs to compute mathematical features capturing structural properties at multiple scales. These features were used to generate multiscale cell-graph signatures of untreated and ROCK signaling disrupted salivary gland organ explants. From confocal images of mouse submandibular salivary gland organ explants in which epithelial and mesenchymal nuclei were marked, a multiscale feature set capturing global structural properties, local structural properties, spectral, and morphological properties of the tissues was derived. Six feature selection algorithms and multiway modeling of the data was performed to identify distinct subsets of cell graph features that can uniquely classify and differentiate between different cell populations. Multiscale cell-graph analysis was most effective in classification of the tissue state. Cellular and tissue organization, as defined by a multiscale subset of cell-graph features, are both quantitatively distinct in epithelial and mesenchymal cell types both in the presence and absence of ROCK inhibitors. Whereas tensor analysis demonstrate that epithelial tissue was affected the most by inhibition of ROCK signaling, significant multiscale changes in mesenchymal tissue organization were identified with this analysis that were not identified in previous biological studies. We here show how to define and calculate a multiscale feature set as an effective computational approach to identify and quantify changes at multiple biological scales and to distinguish between different states in developing tissues.


Subject(s)
Models, Biological , Morphogenesis , Salivary Glands/growth & development , Animals , Artificial Intelligence , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Computer Graphics , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Mesoderm/cytology , Mesoderm/drug effects , Mice , Molecular Imaging , Morphogenesis/drug effects , Protein Kinase Inhibitors/pharmacology , Reproducibility of Results , Salivary Glands/cytology , Salivary Glands/metabolism , Signal Transduction/drug effects , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/metabolism
13.
J Phys Chem B ; 114(17): 5851-61, 2010 May 06.
Article in English | MEDLINE | ID: mdl-20380411

ABSTRACT

The DNA binding property of a Cu(II) complex, viz., [Cu(mal)(2)](picH)(2).2H(2)O, (mal)(2) = malonic acid, picH = protonated 2-amino-4-picoline, has been investigated in this study. The binding of this complex with plasmid and chromosomal DNA has been characterized by different biophysical techniques. From the absorption and fluorescence spectroscopic studies, it has been observed that the said copper complex binds strongly with pUC19 plasmid and CT DNA with a binding affinity of 2.368 x 10(3) and 4.0 x 10(3) M(-1), respectively, in 10 mM citrate-phosphate buffer, pH 7.4. Spectrofluorimetric studies reveal that the copper complex exhibits partial DNA intercalation as well as partial DNA minor groove binding properties. Consequently, in agarose gel electrophoresis study, it has been observed that the complex alone induces positive supercoiling in plasmid DNA while in the presence of H(2)O(2) it exhibits nuclease activity. The induction of the breakage in DNA backbone depends upon the relative concentrations of H(2)O(2) and copper complex followed by the time of incubation with DNA. Optical DNA melting study, isothermal titration calorimetry, and absorption spectroscopy have been used to characterize the nuclease activity of this complex in the presence of H(2)O(2). Further, (1)H NMR study indicates that Cu(II) in the complex is converted into the Cu(I) state by the reduction of H(2)O(2). Finally, agarose gel electrophoresis study with different radical scavengers concludes that the production of both hydroxyl radicals and reactive oxygen species is responsible for this nuclease activity.


Subject(s)
Coordination Complexes/chemistry , DNA/chemistry , Hydrogen Peroxide/chemistry , Ligands , Picolines/chemistry , Circular Dichroism , Copper/chemistry , Deoxyribonucleases/chemistry , Deoxyribonucleases/metabolism , Electrophoresis, Agar Gel , Malonates/chemistry , Molecular Conformation , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...