Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
J Exp Clin Cancer Res ; 43(1): 18, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38200580

ABSTRACT

BACKGROUND: Medulloblastoma (MB) patients with MYC oncogene amplification or overexpression exhibit extremely poor prognoses and therapy resistance. However, MYC itself has been one of the most challenging targets for cancer treatment. Here, we identify a novel marinopyrrole natural derivative, MP1, that shows desirable anti-MYC and anti-cancer activities in MB. METHODS: In this study, using MYC-amplified (Group 3) and non-MYC amplified MB cell lines in vitro and in vivo, we evaluated anti-cancer efficacies and molecular mechanism(s) of MP1. RESULTS: MP1 significantly suppressed MB cell growth and sphere counts and induced G2 cell cycle arrest and apoptosis in a MYC-dependent manner. Mechanistically, MP1 strongly downregulated the expression of MYC protein. Our results with RNA-seq revealed that MP1 significantly modulated global gene expression and inhibited MYC-associated transcriptional targets including translation/mTOR targets. In addition, MP1 inhibited MYC-target metabolism, leading to declined energy levels. The combination of MP1 with an FDA-approved mTOR inhibitor temsirolimus synergistically inhibited MB cell growth/survival by downregulating the expression of MYC and mTOR signaling components. Our results further showed that as single agents, both MP1 and temsirolimus, were able to significantly inhibit tumor growth and MYC expression in subcutaneously or orthotopically MYC-amplified MB bearing mice. In combination, there were further anti-MB effects on the tumor growth and MYC expression in mice. CONCLUSION: These preclinical findings highlight the promise of marinopyrrole MP1 as a novel MYC inhibition approach for MYC-amplified MB.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Sirolimus/analogs & derivatives , Humans , Animals , Mice , Medulloblastoma/drug therapy , Medulloblastoma/genetics , G2 Phase Cell Cycle Checkpoints , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , TOR Serine-Threonine Kinases
2.
Drug Metab Dispos ; 52(2): 69-79, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-37973374

ABSTRACT

Lung cancer is the leading cause of cancer deaths worldwide. We found that the cytochrome P450 isoform CYP4F11 is significantly overexpressed in patients with lung squamous cell carcinoma. CYP4F11 is a fatty acid ω-hydroxylase and catalyzes the production of the lipid mediator 20-hydroxyeicosatetraenoic acid (20-HETE) from arachidonic acid. 20-HETE promotes cell proliferation and migration in cancer. Inhibition of 20-HETE-generating cytochrome P450 enzymes has been implicated as novel cancer therapy for more than a decade. However, the exact role of CYP4F11 and its potential as drug target for lung cancer therapy has not been established yet. Thus, we performed a transient knockdown of CYP4F11 in the lung cancer cell line NCI-H460. Knockdown of CYP4F11 significantly inhibits lung cancer cell proliferation and migration while the 20-HETE production is significantly reduced. For biochemical characterization of CYP4F11-inhibitor interactions, we generated recombinant human CYP4F11. Spectroscopic ligand binding assays were conducted to evaluate CYP4F11 binding to the unselective CYP4A/F inhibitor HET0016. HET0016 shows high affinity to recombinant CYP4F11 and inhibits CYP4F11-mediated 20-HETE production in vitro with a nanomolar IC 50 Cross evaluation of HET0016 in NCI-H460 cells shows that lung cancer cell proliferation is significantly reduced together with 20-HETE production. However, HET0016 also displays antiproliferative effects that are not 20-HETE mediated. Future studies aim to establish the role of CYP4F11 in lung cancer and the underlying mechanism and investigate the potential of CYP4F11 as a therapeutic target for lung cancer. SIGNIFICANCE STATEMENT: Lung cancer is a deadly cancer with limited treatment options. Cytochrome P450 4F11 (CYP4F11) is significantly upregulated in lung squamous cell carcinoma. Knockdown of CYP4F11 in a lung cancer cell line significantly attenuates cell proliferation and migration with reduced production of the lipid mediator 20-hydroxyeicosatetraenoic acid (20-HETE). Studies with the unselective inhibitor HET0016 show a high inhibitory potency of CYP4F11-mediated 20-HETE production using recombinant enzyme. Overall, our studies demonstrate the potential of targeting CYP4F11 for new transformative lung cancer treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Fatty Acids , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 CYP4A , Eicosanoids , Hydroxyeicosatetraenoic Acids/metabolism , Cytochrome P450 Family 4/genetics
3.
Front Neurol ; 14: 1282846, 2023.
Article in English | MEDLINE | ID: mdl-38073648

ABSTRACT

Introduction: Dihydroergotamine mesylate (DHE) is an established effective acute therapy for migraine and is often characterized by its broad receptor pharmacology. Knowledge of DHE pharmacology largely comes from studies employing older methodologies. Objective: To assess DHE receptor activity using high-throughput methods to screen for functional ß-arrestin activity at G protein-coupled receptors (GPCRs). Methods: Functional receptor activities of DHE and sumatriptan succinate (both 10 µM) were screened against 168 GPCRs using the gpcrMAX assay. Agonist and antagonist effects were considered significant if receptor activity was >30% or inhibited by >50%, respectively. Radiolabeled ligand binding assays were performed for DHE (0.01-300 nM for 5-HT3 and 4E; 0.3-10,000 nM for 5-HT1B, α-adrenergic2B [i.e., α2B-adrenoceptor], D2, and D5) to assess specific binding to select receptors. Results: DHE (10 µM) exhibited agonist activity at α-adrenergic2B, CXC chemokine receptor 7 (CXCR7), dopamine (D)2/5, and 5-hydroxytryptamine (5-HT)1A/1B/2A/2C/5A receptors and antagonist activity at α-adrenergic1B/2A/2C (i.e., α1B/2A/2C-adrenoceptors), calcitonin receptor-receptor activity modifying protein 2 (CTR-RAMP2) or amylin 2 (AMY2), D1/3/4/5, and 5-HT1F receptors. Sumatriptan succinate (10 µM) exhibited agonist activity at the 5-HT1B/1E/1F/5A receptors. DHE demonstrated a half-maximal inhibitory concentration (IC50) of 149 nM at the 5-HT1F receptor and a half-maximal effective concentration (EC50) of 6 µM at the CXCR7 receptor. DHE did not bind to the 5-HT3 receptor at concentrations up to 300 nM and bound poorly to 5-HT4E and D5 receptors (IC50 of 230 and 370 nM, respectively). DHE bound strongly to the D2, 5-HT1B, and α-adrenergic2B receptors (IC50 of 0.47, 0.58, and 2.8 nM, respectively). Conclusion: By using a high-throughput ß-arrestin recruitment assay, this study confirmed the broad receptor profile of DHE and provided an update on DHE receptor pharmacology as it relates to migraine.

4.
Curr Pain Headache Rep ; 27(11): 765-774, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37792173

ABSTRACT

PURPOSE OF REVIEW: Historical evidence suggests a shared underlying etiology for migraine and gastrointestinal (GI) disorders that involves the gut-brain axis. Here we provide narrative review of recent literature on the gut-brain connection and migraine to emphasize the importance of tailoring treatment plans for patients with episodic migraine who experience GI comorbidities and symptoms. RECENT FINDINGS: Recent population-based studies report the prevalence of migraine and GI disorders as comorbidities as well as overlapping symptomology. American Headache Society (AHS) guidelines have integrated GI symptoms as part of migraine diagnostic criteria and recommend nonoral therapies for patients with GI symptoms or conditions. Nasal delivery is a recommended nonoral alternative; however, it is important to understand potential adverse events that may cause or worsen GI symptoms in some patients due to the site of drug deposition within the nasal cavity with some nasal therapies. Lastly, clinical perspectives emphasize the importance of identifying GI symptoms and comorbidities in patients with episodic migraine to best individualize migraine management. Support for an association between the gut-brain axis and migraine continues to prevail in recent literature; however, the relationship remains complex and not well elucidated. The presence of GI comorbidities and symptoms must be carefully considered when making treatment decisions for patients with episodic migraine.


Subject(s)
Migraine Disorders , Humans , Migraine Disorders/diagnosis , Migraine Disorders/epidemiology , Migraine Disorders/drug therapy , Brain , Headache/epidemiology , Comorbidity
5.
Methods Mol Biol ; 2701: 253-259, 2023.
Article in English | MEDLINE | ID: mdl-37574488

ABSTRACT

Cancer is a heterogeneous disease, comprising of a mixture of different cell populations. Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are a subpopulation of multipotent cells within the cancer that has self-renewing capability, tumor-initiating ability, multi-differentiation potential, and an inherent capacity for drug and chemoresistance. Sphere-formation assay is commonly used for enrichment and analysis of CSC properties in vitro and is typically used as a metric for testing the viability of tumor cells to anticancer agents. This model is based on the ability of CSCs to grow under ultralow-attachment conditions in serum-free medium supplemented with growth factors. In contrast to the adherent 2D culture of cancer cells, the 3D culture of tumorsphere assay exploits inherent biologic features of CSCs such as anoikis resistance and self-renewal. We describe here the detailed methodology for the generation and propagation of spheres generated from pediatric brain tumor medulloblastoma (MB) cells. As signal transducer and activator of transcription (STAT3) is known to play an important role in maintaining cancer stem cell properties, we accessed the effect of depleting or inhibiting STAT3 on MB-sphere sizes, numbers, and integrity. This may serve as a promising platform for screening potential anti-CSC agents and small-molecule inhibitors.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , Child , Humans , Medulloblastoma/pathology , Spheroids, Cellular , Brain Neoplasms/pathology , Cerebellar Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Cell Line, Tumor , Cell Proliferation
6.
Nanomedicine (Lond) ; 18(11): 855-874, 2023 05.
Article in English | MEDLINE | ID: mdl-37503814

ABSTRACT

Aim: To codeliver an anticancer drug (doxorubicin) and siRNA in the form of nanoparticles into CD44-overexpressing colon cancer cells (HT-29) using an anionic, amphiphilic biopolymer comprising modified hyaluronic acid (6-O-[3-hexadecyloxy-2-hydroxypropyl]-hyaluronic acid). Materials & methods: Characterization of nanoparticles was performed using dynamic light scattering, scanning electron microscopy, transmission electron microscopy, molecular docking, in vitro drug release and gel mobility assays. Detailed in vitro experiments, including a gene silencing study and western blot, were also performed. Results: A 69% knockdown of the target gene was observed, and western blot showed 5.7-fold downregulation of the target protein. The repulsive forces between siRNA and 6-O-(3-hexadecyloxy-2-hydroxypropyl)-hyaluronic acid were overcome by hydrogen bonding and hydrophobic interactions. Conclusion: The authors successfully codelivered a drug and siRNA by anionic vector.


Mutations in genes are the main reason for the development of cancer. siRNA can selectively downregulate the key genes responsible for a particular cancer; however, this depends on successful delivery of siRNA into cancer cells. Usually, a negatively charged cell membrane repels negatively charged siRNA, which hinders siRNA entry into cancer cells. Usually, positively charged (cationic) polymers are used to mask siRNA for crossing the cancer cell membrane. However, cationic polymers are usually toxic to the body and show several adverse effects. By contrast, negatively charged polymers are safe alternatives for delivering siRNA into cancer cells. However, the main challenge of using anionic polymer lies behind the repulsive interaction between siRNA and negatively charged vectors, as both are negative. Herein we report successful codelivery of siRNA and an anticancer drug into cancer cells using a negatively charged polymer.


Subject(s)
Hyaluronic Acid , Nanoparticles , RNA, Small Interfering/chemistry , Hyaluronic Acid/chemistry , Static Electricity , Molecular Docking Simulation , Nanoparticles/chemistry , Biopolymers , Cell Line, Tumor
7.
Cancers (Basel) ; 15(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37190167

ABSTRACT

MB is a common childhood malignancy of the central nervous system, with significant morbidity and mortality. Among the four molecular subgroups, MYC-amplified Group 3 MB is the most aggressive type and has the worst prognosis due to therapy resistance. The present study aimed to investigate the role of activated STAT3 in promoting MB pathogenesis and chemoresistance via inducing the cancer hallmark MYC oncogene. Targeting STAT3 function either by inducible genetic knockdown (KD) or with a clinically relevant small molecule inhibitor reduced tumorigenic attributes in MB cells, including survival, proliferation, anti-apoptosis, migration, stemness and expression of MYC and its targets. STAT3 inhibition attenuates MYC expression by affecting recruitment of histone acetyltransferase p300, thereby reducing enrichment of H3K27 acetylation in the MYC promoter. Concomitantly, it also decreases the occupancy of the bromodomain containing protein-4 (BRD4) and phosphoSer2-RNA Pol II (pSer2-RNAPol II) on MYC, resulting in reduced transcription. Importantly, inhibition of STAT3 signaling significantly attenuated MB tumor growth in subcutaneous and intracranial orthotopic xenografts, increased the sensitivity of MB tumors to cisplatin, and improved the survival of mice bearing high-risk MYC-amplified tumors. Together, the results of our study demonstrate that targeting STAT3 may be a promising adjuvant therapy and chemo-sensitizer to augment treatment efficacy, reduce therapy-related toxicity and improve quality of life in high-risk pediatric patients.

8.
J Headache Pain ; 23(1): 148, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36414952

ABSTRACT

BACKGROUND: Headache recurrence is a common feature of acute therapies, whether approved or still in development, and continues to be a significant problem for both the patient and the clinician. Further complicating this issue is lack of standardization in definitions of recurrence used in clinical trials, as well as disparity in patient characteristics, rendering a comparison of different acute medications challenging. Recurrence has serious clinical implications, which can include an increased risk for new-onset chronic migraine and/or development of medication overuse headache. The aim of this review is to illustrate variability of recurrence rates depending on prevailing definitions in the literature for widely used acute treatments for migraine and to emphasize sustained response as a clinically relevant endpoint for measuring prolonged efficacy. BODY: A literature search of PubMed for articles of approved acute therapies for migraine that reported recurrence rates was performed. Study drugs of interest included select triptans, gepants, lasmiditan, and dihydroergotamine mesylate. An unpublished post hoc analysis of an investigational dihydroergotamine mesylate product that evaluated recurrence rates using several different definitions of recurrence common in the literature is also included. Depending on the criteria established by the clinical trial and the definition of recurrence used, rates of recurrence vary considerably across different acute therapies for migraine, making it difficult to compare results of different trials to assess the sustained (i.e., over a single attack) and the prolonged (i.e., over multiple attacks) efficacy of a particular study medication. CONCLUSION: A standardized definition of recurrence is necessary to help physicians evaluate recurrence rates of different abortive agents for migraine. Sustained pain relief or freedom may be more comprehensive efficacy outcome measures than recurrence. Future efficacy studies should be encouraged to use the recommended definition of sustained pain freedom set by the International Headache Society.


Subject(s)
Dihydroergotamine , Migraine Disorders , Humans , Migraine Disorders/drug therapy , Calcitonin Gene-Related Peptide Receptor Antagonists , Headache , Outcome Assessment, Health Care
9.
J Exp Clin Cancer Res ; 41(1): 321, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36357906

ABSTRACT

BACKGROUND: Medulloblastoma (MB) patients with MYC oncogene amplification or overexpression exhibit extremely poor clinical outcomes and respond poorly to current therapies. Epigenetic deregulation is very common in MYC-driven MB. The bromodomain extra-terminal (BET) proteins and histone deacetylases (HDACs) are epigenetic regulators of MYC transcription and its associated tumorigenic programs. This study aimed to investigate the therapeutic potential of inhibiting the BET proteins and HDACs together in MB. METHODS: Using clinically relevant BET inhibitors (JQ1 or OTX015) and a pan-HDAC inhibitor (panobinostat), we evaluated the effects of combined inhibition on cell growth/survival in MYC-amplified MB cell lines and xenografts and examined underlying molecular mechanism(s). RESULTS: Co-treatment of JQ1 or OTX015 with panobinostat synergistically suppressed growth/survival of MYC-amplified MB cells by inducing G2 cell cycle arrest and apoptosis. Mechanistic investigation using RNA-seq revealed that co-treatment of JQ1 with panobinostat synergistically modulated global gene expression including MYC/HDAC targets. SYK and MSI1 oncogenes were among the top 50 genes synergistically downregulated by JQ1 and panobinostat. RT-PCR and western blot analyses confirmed that JQ1 and panobinostat synergistically inhibited the mRNA and protein expression of MSI1/SYK along with MYC expression. Reduced SYK/MSI expression after BET (specifically, BRD4) gene-knockdown further confirmed the epigenetic regulation of SYK and MSI1 genes. In addition, the combination of OTX015 and panobinostat significantly inhibited tumor growth in MYC-amplified MB xenografted mice by downregulating expression of MYC, compared to single-agent therapy. CONCLUSIONS: Together, our findings demonstrated that dual-inhibition of BET and HDAC proteins of the epigenetic pathway can be a novel therapeutic approach against MYC-driven MB.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Mice , Animals , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Histone Deacetylases/metabolism , Nuclear Proteins/metabolism , Panobinostat/pharmacology , Panobinostat/therapeutic use , Azepines/pharmacology , Epigenesis, Genetic , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Transcription Factors/metabolism , Triazoles/pharmacology , Apoptosis , Cell Proliferation , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism
10.
J Aerosol Med Pulm Drug Deliv ; 35(6): 321-332, 2022 12.
Article in English | MEDLINE | ID: mdl-36108289

ABSTRACT

Oral tablets account for the majority of medications used to acutely treat migraine, but relief can be limited by their rates of dissolution and absorption. The nose is an attractive alternative route of drug delivery since it provides patient convenience of at-home use, gastrointestinal (GI) avoidance, and rapid absorption of drugs into systemic circulation because of its large surface area. However, the site of drug deposition within the nasal cavity should be considered since it can influence drug absorption. Traditional nasal devices have been shown to target drug delivery to the lower nasal space where epithelium is not best-suited for drug absorption and where there is an increased likelihood of drug clearance due to nasal drip, swallowing, or mucociliary clearance, potentially resulting in variable absorption and suboptimal efficacy. Alternatively, the upper nasal space (UNS) offers a permeable, richly vascularized epithelium with a decreased likelihood of drug loss or clearance due to the anatomy of this area. Traditional nasal pumps deposit <5% of active drug into the UNS because of the nasal cavity's complex architecture. A new technology, Precision Olfactory Delivery (POD®), is a handheld, manually actuated, propellant-powered, administration device that delivers drug specifically to the UNS. A dihydroergotamine (DHE) mesylate product, INP104, utilizes POD technology to deliver drug to the UNS for the acute treatment of migraine. Results from clinical studies of INP104 demonstrate a favorable pharmacokinetic profile, consistent and predictable dosing, rapid systemic levels known to be effective (similar to other DHE mesylate clinical programs), safety and tolerability on the upper nasal mucosa, and high patient acceptance. POD technology may have the potential to overcome the limitations of traditional nasal delivery systems, while utilizing the nasal delivery benefits of GI tract avoidance, rapid onset, patient convenience, and ease of use.


Subject(s)
Dihydroergotamine , Migraine Disorders , Humans , Dihydroergotamine/therapeutic use , Administration, Intranasal , Administration, Inhalation , Migraine Disorders/drug therapy , Technology , Mesylates/therapeutic use
11.
Nucleic Acids Res ; 50(6): 3394-3412, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35286386

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC), one of the most aggressive types of cancer, is characterized by aberrant activity of oncogenic KRAS. A nuclease-hypersensitive GC-rich region in KRAS promoter can fold into a four-stranded DNA secondary structure called G-quadruplex (G4), known to regulate KRAS expression. However, the factors that regulate stable G4 formation in the genome and KRAS expression in PDAC are largely unknown. Here, we show that APE1 (apurinic/apyrimidinic endonuclease 1), a multifunctional DNA repair enzyme, is a G4-binding protein, and loss of APE1 abrogates the formation of stable G4 structures in cells. Recombinant APE1 binds to KRAS promoter G4 structure with high affinity and promotes G4 folding in vitro. Knockdown of APE1 reduces MAZ transcription factor loading onto the KRAS promoter, thus reducing KRAS expression in PDAC cells. Moreover, downregulation of APE1 sensitizes PDAC cells to chemotherapeutic drugs in vitro and in vivo. We also demonstrate that PDAC patients' tissue samples have elevated levels of both APE1 and G4 DNA. Our findings unravel a critical role of APE1 in regulating stable G4 formation and KRAS expression in PDAC and highlight G4 structures as genomic features with potential application as a novel prognostic marker and therapeutic target in PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , G-Quadruplexes , Pancreatic Neoplasms , Proto-Oncogene Proteins p21(ras) , Carcinoma, Pancreatic Ductal/genetics , DNA/chemistry , Endonucleases/metabolism , Humans , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Pancreatic Neoplasms
12.
DNA Repair (Amst) ; 109: 103246, 2022 01.
Article in English | MEDLINE | ID: mdl-34847380

ABSTRACT

Genomic DNA in the nucleus is wrapped around nucleosomes, a repeating unit of chromatin. The nucleosome, consisting of octamer of core histones, is a barrier for several cellular processes that require access to the naked DNA. The FAcilitates Chromatin Transcription (FACT), a histone chaperone complex, is involved in nucleosome remodeling via eviction or assembly of histones during transcription, replication, and DNA repair. Increasing evidence suggests that FACT plays an important role in multiple DNA repair pathways including transcription-coupled nucleotide excision repair (TC-NER) of UV-induced damage, DNA single- and double-strand breaks (DSBs) repair, and base excision repair (BER) of oxidized or alkylated damaged bases. Further, studies have shown overexpression of FACT in multiple types of cancer and its association with drug resistance and patients' poor prognosis. In this review, we discuss how FACT is accumulated at the damage site and what functions it performs. We describe the known mechanisms by which FACT facilitates repair of different types of DNA damage. Further, we highlight the recent advances in a class of FACT inhibitors, called curaxins, which show promise as a new adjuvant therapy to sensitize multiple types of cancer to chemotherapy and radiation.


Subject(s)
Chromatin Assembly and Disassembly , DNA Repair , Histone Chaperones/metabolism , Nucleosomes/metabolism , Animals , Humans , Neoplasms/drug therapy , Neoplasms/genetics
13.
BMC Cancer ; 21(1): 1061, 2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34565342

ABSTRACT

BACKGROUND: Neuroblastoma (NB) patients with MYCN amplification or overexpression respond poorly to current therapies and exhibit extremely poor clinical outcomes. PI3K-mTOR signaling-driven deregulation of protein synthesis is very common in NB and various other cancers that promote MYCN stabilization. In addition, both the MYCN and mTOR signaling axes can directly regulate a common translation pathway that leads to increased protein synthesis and cell proliferation. However, a strategy of concurrently targeting MYCN and mTOR signaling in NB remains unexplored. This study aimed to investigate the therapeutic potential of targeting dysregulated protein synthesis pathways by inhibiting the MYCN and mTOR pathways together in NB. METHODS: Using small molecule/pharmacologic approaches, we evaluated the effects of combined inhibition of MYCN transcription and mTOR signaling on NB cell growth/survival and associated molecular mechanism(s) in NB cell lines. We used two well-established BET (bromodomain extra-terminal) protein inhibitors (JQ1, OTX-015), and a clinically relevant mTOR inhibitor, temsirolimus, to target MYCN transcription and mTOR signaling, respectively. The single agent and combined efficacies of these inhibitors on NB cell growth, apoptosis, cell cycle and neurospheres were assessed using MTT, Annexin-V, propidium-iodide staining and sphere assays, respectively. Effects of inhibitors on global protein synthesis were quantified using a fluorescence-based (FamAzide)-based protein synthesis assay. Further, we investigated the specificities of these inhibitors in targeting the associated pathways/molecules using western blot analyses. RESULTS: Co-treatment of JQ1 or OTX-015 with temsirolimus synergistically suppressed NB cell growth/survival by inducing G1 cell cycle arrest and apoptosis with greatest efficacy in MYCN-amplified NB cells. Mechanistically, the co-treatment of JQ1 or OTX-015 with temsirolimus significantly downregulated the expression levels of phosphorylated 4EBP1/p70-S6K/eIF4E (mTOR components) and BRD4 (BET protein)/MYCN proteins. Further, this combination significantly inhibited global protein synthesis, compared to single agents. Our findings also demonstrated that both JQ1 and temsirolimus chemosensitized NB cells when tested in combination with cisplatin chemotherapy. CONCLUSIONS: Together, our findings demonstrate synergistic efficacy of JQ1 or OTX-015 and temsirolimus against MYCN-driven NB, by dual-inhibition of MYCN (targeting transcription) and mTOR (targeting translation). Additional preclinical evaluation is warranted to determine the clinical utility of targeted therapy for high-risk NB patients.


Subject(s)
Acetanilides/pharmacology , Azepines/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacology , N-Myc Proto-Oncogene Protein/antagonists & inhibitors , Neuroblastoma/drug therapy , Sirolimus/analogs & derivatives , TOR Serine-Threonine Kinases/antagonists & inhibitors , Triazoles/pharmacology , Adaptor Proteins, Signal Transducing/drug effects , Adaptor Proteins, Signal Transducing/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle Proteins/drug effects , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cisplatin/pharmacology , Down-Regulation , Drug Synergism , Eukaryotic Initiation Factor-4E/drug effects , Eukaryotic Initiation Factor-4E/metabolism , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/metabolism , Neuroblastoma/pathology , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Ribosomal Protein S6 Kinases, 70-kDa/drug effects , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Signal Transduction , Sirolimus/pharmacology , Spheroids, Cellular/drug effects , TOR Serine-Threonine Kinases/metabolism , Transcription Factors/drug effects , Transcription Factors/metabolism
14.
Cancer Lett ; 520: 201-212, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34271103

ABSTRACT

Medulloblastoma (MB) is a malignant pediatric brain tumor with a poor prognosis. Post-surgical radiation and cisplatin-based chemotherapy have been a mainstay of treatment, which often leads to substantial neurocognitive impairments and morbidity, highlighting the need for a novel therapeutic target to enhance the sensitivity of MB tumors to cytotoxic therapies. We performed a comprehensive study using a cohort of 71 MB patients' samples and pediatric MB cell lines and found that MB tumors have elevated levels of nucleosome remodeling FACT (FAcilitates Chromatin Transcription) complex and DNA repair enzyme AP-endonuclease1 (APE1). FACT interacts with APE1 and facilitates recruitment and acetylation of APE1 to promote repair of radiation and cisplatin-induced DNA damage. Further, levels of FACT and acetylated APE1 both are correlate strongly with MB patients' survival. Targeting FACT complex with CBL0137 inhibits DNA repair and alters expression of a subset of genes, and significantly improves the potency of cisplatin and radiation in vitro and in MB xenograft. Notably, combination of CBL0137 and cisplatin significantly suppressed MB tumor growth in an intracranial orthotopic xenograft model. We conclude that FACT complex promotes chemo-radiation resistance in MB, and FACT inhibitor CBL0137 can be used as a chemo-radiation sensitizer to augment treatment efficacy and reduce therapy-related toxicity in high-risk pediatric patients.


Subject(s)
Cisplatin/administration & dosage , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-Binding Proteins/genetics , High Mobility Group Proteins/genetics , Medulloblastoma/drug therapy , Transcriptional Elongation Factors/genetics , Adolescent , Adult , Animals , Carbazoles/administration & dosage , Carbazoles/adverse effects , Child , Child, Preschool , Cisplatin/adverse effects , DNA Damage/drug effects , DNA Damage/radiation effects , DNA Repair/drug effects , DNA Repair/radiation effects , DNA-Binding Proteins/antagonists & inhibitors , Drug Resistance, Neoplasm/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/radiation effects , Heterografts , High Mobility Group Proteins/antagonists & inhibitors , Histone Chaperones/genetics , Humans , Male , Medulloblastoma/genetics , Medulloblastoma/pathology , Medulloblastoma/radiotherapy , Mice , Transcriptional Elongation Factors/antagonists & inhibitors , Young Adult
15.
Headache ; 61(4): 576-589, 2021 04.
Article in English | MEDLINE | ID: mdl-33793965

ABSTRACT

BACKGROUND: Migraine is a complex, multifaceted, and disabling headache disease that is often complicated by gastrointestinal (GI) conditions, such as gastroparesis, functional dyspepsia, and cyclic vomiting syndrome (CVS). Functional dyspepsia and CVS are part of a spectrum of disorders newly classified as disorders of gut-brain interaction (DGBI). Gastroparesis and functional dyspepsia are both associated with delayed gastric emptying, while nausea and vomiting are prominent in CVS, which are also symptoms that commonly occur with migraine attacks. Furthermore, these gastric disorders are comorbidities frequently reported by patients with migraine. While very few studies assessing GI disorders in patients with migraine have been performed, they do demonstrate a physiological link between these conditions. OBJECTIVE: To summarize the available studies supporting a link between GI comorbidities and migraine, including historical and current scientific evidence, as well as provide evidence that symptoms of GI disorders are also observed outside of migraine attacks during the interictal period. Additionally, the importance of route of administration and formulation of migraine therapies for patients with GI symptoms will be discussed. METHODS: A literature search of PubMed for articles relating to the relationship between the gut and the brain with no restriction on the publication year was performed. Studies providing scientific support for associations of gastroparesis, functional dyspepsia, and CVS with migraine and the impact these associations may have on migraine treatment were the primary focus. This is a narrative review of identified studies. RESULTS: Although the association between migraine and GI disorders has received very little attention in the literature, the existing evidence suggests that they may share a common etiology. In particular, the relationship between migraine, gastric motility, and vomiting has important clinical implications in the treatment of migraine, as delayed gastric emptying and vomiting may affect oral dosing compliance, and thus, the absorption and efficacy of oral migraine treatments. CONCLUSIONS: There is evidence of a link between migraine and GI comorbidities, including those under the DGBI classification. Many patients do not find adequate relief with oral migraine therapies, which further necessitates increased recognition of GI disorders in patients with migraine by the headache community.


Subject(s)
Gastrointestinal Diseases/epidemiology , Migraine Disorders/epidemiology , Brain-Gut Axis/physiology , Gastrointestinal Diseases/physiopathology , Humans , Migraine Disorders/physiopathology
16.
Diagnostics (Basel) ; 12(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35054230

ABSTRACT

Medulloblastoma (MB) is the most common malignant central nervous system tumor in pediatric patients. Mainstay of therapy remains surgical resection followed by craniospinal radiation and chemotherapy, although limitations to this therapy are applied in the youngest patients. Clinically, tumors are divided into average and high-risk status on the basis of age, metastasis at diagnosis, and extent of surgical resection. However, technological advances in high-throughput screening have facilitated the analysis of large transcriptomic datasets that have been used to generate the current classification system, dividing patients into four primary subgroups, i.e., WNT (wingless), SHH (sonic hedgehog), and the non-SHH/WNT subgroups 3 and 4. Each subgroup can further be subdivided on the basis of a combination of cytogenetic and epigenetic events, some in distinct signaling pathways, that activate specific phenotypes impacting patient prognosis. Here, we delve deeper into the genetic basis for each subgroup by reviewing the extent of cytogenetic events in key genes that trigger neoplastic transformation or that exhibit oncogenic properties. Each of these discussions is further centered on how these genetic aberrations can be exploited to generate novel targeted therapeutics for each subgroup along with a discussion on challenges that are currently faced in generating said therapies. Our future hope is that through better understanding of subgroup-specific cytogenetic events, the field may improve diagnosis, prognosis, and treatment to improve overall quality of life for these patients.

17.
J Pharmacol Exp Ther ; 374(2): 233-240, 2020 08.
Article in English | MEDLINE | ID: mdl-32423989

ABSTRACT

CYP2C9 is a major form of human liver cytochrome P450 that is responsible for the oxidative metabolism of several widely used low-therapeutic index drugs, including (S)-warfarin and phenytoin. In a cohort of Alaska Native people, ultrarare or novel CYP2C9 protein variants, M1L (rs114071557), N218I (rs780801862), and P279T (rs182132442, CYP2C9*29), are expressed with higher frequencies than the well characterized CYP2C9*2 and CYP2C9*3 alleles. We report here on their relative expression in lentivirus-infected HepG2 cells and the functional characterization of purified reconstituted enzyme variants expressed in Escherichia coli toward (S)-warfarin, phenytoin, flurbiprofen, and (S)-naproxen. In the infected HepG2 cells, robust mRNA and protein expression were obtained for wild-type, N218I, and P279T variants, but as expected, the M1L variant protein was not translated in this liver-derived cell line. His-tagged wild-type protein and the N218I and P279T variants, but not M1L, expressed well in E. coli and were highly purified after affinity chromatography. Upon reconstitution with cytochrome P450 oxidoreductase and cytochrome b5, the N218I and P279T protein variants metabolized (S)-warfarin, phenytoin, flurbiprofen, and (S)-naproxen to the expected monohydroxylated or O-demethylated metabolites. Steady-state kinetic analyses revealed that the relative catalytic efficiency ratios of (S)-warfarin metabolism by the P279T and N218I variants were 87% and 24%, respectively, of wild-type CYP2C9 protein. A similar rank ordering was observed for metabolism of phenytoin, flurbiprofen, and (S)-naproxen. We conclude that carriers of the variant N218I and, especially, the M1L alleles would be at risk of exacerbated therapeutic effects from drugs that rely on CYP2C9 for their metabolic clearance. SIGNIFICANCE STATEMENT: Novel gene variants of CYP2C9-M1L, and N218I, along with P279T (CYP2C9*29)-are expressed in Alaska Native people at relatively high frequencies. In vitro characterization of their functional effects revealed that each variant confers reduced catalytic efficiency toward several substrates, including the low-therapeutic index drugs (S)-warfarin and phenytoin. These data provide the first functional information for new, common CYP2C9 variants in this understudied population. The data may help guide dose adjustments in allele carriers, thus mitigating potential healthcare disparities.


Subject(s)
Cytochrome P-450 CYP2C9/genetics , Cytochrome P-450 CYP2C9/metabolism , Indigenous Peoples/genetics , Alaska/ethnology , Escherichia coli/genetics , Gene Expression , HEK293 Cells , Humans , Proteolysis , Trypsin/metabolism
18.
Mol Cancer Ther ; 19(6): 1351-1362, 2020 06.
Article in English | MEDLINE | ID: mdl-32371591

ABSTRACT

The MYC oncogene is frequently amplified in patients with medulloblastoma, particularly in group 3 patients, who have the worst prognosis. mTOR signaling-driven deregulated protein synthesis is very common in various cancers, including medulloblastoma, that can promote MYC stabilization. As a transcription factor, MYC itself is further known to regulate transcription of several components of protein synthesis machinery, leading to an enhanced protein synthesis rate and proliferation. Thus, inhibiting enhanced protein synthesis by targeting the MYC and mTOR pathways together may represent a highly relevant strategy for the treatment of MYC-driven medulloblastoma. Here, using siRNA and small-molecule inhibitor approaches, we evaluated the effects of combined inhibition of MYC transcription and mTOR signaling on medulloblastoma cell growth/survival and associated molecular mechanism(s) in MYC-amplified (group 3) medulloblastoma cell lines and xenografts. Combined inhibition of MYC and mTOR synergistically suppressed medulloblastoma cell growth and induced G1 cell-cycle arrest and apoptosis. Mechanistically, the combined inhibition significantly downregulated the expression levels of key target proteins of MYC and mTOR signaling. Our results with RNA-sequencing revealed that combined inhibition synergistically modulated global gene expression including MYC/mTOR components. In addition, the combination treatment significantly delayed tumor growth and prolonged survival of MYC-amplified medulloblastoma xenografted mice by downregulating expression of MYC and the key downstream components of mTOR signaling, compared with single-agent therapy. Together, our findings demonstrated that dual inhibition of MYC (transcription) and mTOR (translation) of the protein synthesis pathway can be a novel therapeutic approach against MYC-driven medulloblastoma.


Subject(s)
Azepines/pharmacology , Cerebellar Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic/drug effects , Imidazoles/pharmacology , Medulloblastoma/drug therapy , Protein Biosynthesis/drug effects , Proto-Oncogene Proteins c-myc/metabolism , Quinolines/pharmacology , Triazoles/pharmacology , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Cell Cycle , Cell Proliferation , Cerebellar Neoplasms/metabolism , Cerebellar Neoplasms/pathology , Female , Humans , Medulloblastoma/metabolism , Medulloblastoma/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Proto-Oncogene Proteins c-myc/genetics , TOR Serine-Threonine Kinases/antagonists & inhibitors , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
19.
Mol Cancer Ther ; 19(1): 258-269, 2020 01.
Article in English | MEDLINE | ID: mdl-31575655

ABSTRACT

Fluorouracil (5-FU) remains a first-line chemotherapeutic agent for colorectal cancer. However, a subset of colorectal cancer patients who have defective mismatch-repair (dMMR) pathway show resistance to 5-FU. Here, we demonstrate that the efficacy of 5-FU in dMMR colorectal cancer cells is largely dependent on the DNA base excision repair (BER) pathway. Downregulation of APE1, a key enzyme in the BER pathway, decreases IC50 of 5-FU in dMMR colorectal cancer cells by 10-fold. Furthermore, we discover that the facilitates chromatin transcription (FACT) complex facilitates 5-FU repair in DNA via promoting the recruitment and acetylation of APE1 (AcAPE1) to damage sites in chromatin. Downregulation of FACT affects 5-FU damage repair in DNA and sensitizes dMMR colorectal cancer cells to 5-FU. Targeting the FACT complex with curaxins, a class of small molecules, significantly improves the 5-FU efficacy in dMMR colorectal cancer in vitro (∼50-fold decrease in IC50) and in vivo xenograft models. We show that primary tumor tissues of colorectal cancer patients have higher FACT and AcAPE1 levels compared with adjacent nontumor tissues. Additionally, there is a strong clinical correlation of FACT and AcAPE1 levels with colorectal cancer patients' response to chemotherapy. Together, our study demonstrates that targeting FACT with curaxins is a promising strategy to overcome 5-FU resistance in dMMR colorectal cancer patients.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carbazoles/pharmacology , Colonic Neoplasms/drug therapy , DNA-Binding Proteins/antagonists & inhibitors , Fluorouracil/pharmacology , High Mobility Group Proteins/antagonists & inhibitors , Transcriptional Elongation Factors/antagonists & inhibitors , Animals , Carbazoles/administration & dosage , Chromatin/metabolism , Colonic Neoplasms/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-Binding Proteins/metabolism , Drug Resistance, Neoplasm , Fluorouracil/administration & dosage , HCT116 Cells , HEK293 Cells , High Mobility Group Proteins/metabolism , Histone Chaperones/antagonists & inhibitors , Histone Chaperones/metabolism , Humans , Male , Mice , Mice, Nude , Molecular Targeted Therapy , Transcriptional Elongation Factors/metabolism , Transfection , Xenograft Model Antitumor Assays
20.
BMC Cancer ; 19(1): 1056, 2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31694585

ABSTRACT

BACKGROUND: MYC amplification or overexpression is common in Group 3 medulloblastoma and is associated with the worst prognosis. Recently, protein arginine methyl transferase (PRMT) 5 expression has been closely associated with aberrant MYC function in various cancers, including brain tumors such as glioblastoma. However, the role of PRMT5 and its association with MYC in medulloblastoma have not been explored. Here, we report the role of PRMT5 as a novel regulator of MYC and implicate PRMT5 as a potential therapeutic target in MYC-driven medulloblastoma. METHODS: Expression and association between PRMT5 and MYC in primary medulloblastoma tumors were investigated using publicly available databases. Expression levels of PRMT5 protein were also examined using medulloblastoma cell lines and primary tumors by western blotting and immunohistochemistry, respectively. Using MYC-driven medulloblastoma cells, we examined the physical interaction between PRMT5 and MYC by co-immunoprecipitation and co-localization experiments. To determine the functional role of PRMT5 in MYC-driven medulloblastoma, PRMT5 was knocked-down in MYC-amplified cells using siRNA and the consequences of knockdown on cell growth and MYC expression/stability were investigated. In vitro therapeutic potential of PRMT5 in medulloblastoma was also evaluated using a small molecule inhibitor, EPZ015666. RESULTS: We observed overexpression of PRMT5 in MYC-driven primary medulloblastoma tumors and cell lines compared to non-MYC medulloblastoma tumors and adjacent normal tissues. We also found that high expression of PRMT5 is inversely correlated with patient survival. Knockdown of PRMT5 using siRNA in MYC-driven medulloblastoma cells significantly decreased cell growth and MYC expression. Mechanistically, we found that PRMT5 physically associated with MYC by direct protein-protein interaction. In addition, a cycloheximide chase experiment showed that PRMT5 post-translationally regulated MYC stability. In the context of therapeutics, we observed dose-dependent efficacy of PRMT5 inhibitor EPZ015666 in suppressing cell growth and inducing apoptosis in MYC-driven medulloblastoma cells. Further, the expression levels of PRMT5 and MYC protein were downregulated upon EPZ015666 treatment. We also observed a superior efficacy of this inhibitor against MYC-amplified medulloblastoma cells compared to non-MYC-amplified medulloblastoma cells, indicating specificity. CONCLUSION: Our results reveal the regulation of MYC oncoprotein by PRMT5 and suggest that targeting PRMT5 could be a potential therapeutic strategy for MYC-driven medulloblastoma.


Subject(s)
Cerebellar Neoplasms/metabolism , Medulloblastoma/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Apoptosis/drug effects , Apoptosis/genetics , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Survival/drug effects , Cell Survival/genetics , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Humans , Isoquinolines/pharmacology , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Protein Binding , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/genetics , Proto-Oncogene Proteins c-myc/genetics , Pyrimidines/pharmacology , RNA Interference , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...