Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 22(1): 400, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35974331

ABSTRACT

BACKGROUND: While it is known that arbuscular mycorrhizal fungi (AMF) can improve nutrient acquisition and herbivore resistance in crops, the mechanisms by which AMF influence plant defense remain unknown. Plants respond to herbivory with a cascade of gene expression and phytochemical biosynthesis. Given that the production of defensive phytochemicals requires nutrients, a commonly invoked hypothesis is that the improvement to plant defense when grown with AMF is simply due to an increased availability of nutrients. An alternative hypothesis is that the AMF effect on herbivory is due to changes in plant defense gene expression that are not simply due to nutrient availability. In this study, we tested whether changes in plant defenses are regulated by nutritional provisioning alone or the response of plant to AMF associations. Maize plants grown with or without AMF and with one of three fertilizer treatments (standard, 2 × nitrogen, or 2 × phosphorous) were infested with fall armyworm (Spodoptera frugiperda; FAW) for 72 h. We measured general plant characteristics (e.g. height, number of leaves), relative gene expression (rtPCR) of three defensive genes (lox3, mpi, and pr5), total plant N and P nutrient content, and change in FAW mass per plant. RESULTS: We found that AMF drove the defense response of maize by increasing the expression of mpi and pr5. Furthermore, while AMF increased the total phosphorous content of maize it had no impact on maize nitrogen. Fertilization alone did not alter upregulation of any of the 3 induced defense genes tested, suggesting the mechanism through which AMF upregulate defenses is not solely via increased N or P plant nutrition. CONCLUSION: This work supports that maize defense may be optimized by AMF associations alone, reducing the need for artificial inputs when managing FAW.


Subject(s)
Mycorrhizae , Animals , Herbivory , Mycorrhizae/physiology , Nitrogen , Phosphorus , Plant Roots , Plants , Spodoptera/physiology , Zea mays/physiology
2.
Viruses ; 14(6)2022 06 20.
Article in English | MEDLINE | ID: mdl-35746814

ABSTRACT

Potyviral genomes encode just 11 major proteins and multifunctionality is associated with most of these proteins at different stages of the virus infection cycle. Some potyviral proteins modulate phytohormones and protein degradation pathways and have either pro- or anti-viral/insect vector functions. Our previous work demonstrated that the potyviral protein 6K1 has an antagonistic effect on vectors when expressed transiently in host plants, suggesting plant defenses are regulated. However, to our knowledge the mechanisms of how 6K1 alters plant defenses and how 6K1 functions are regulated are still limited. Here we show that the 6K1 from Turnip mosaic virus (TuMV) reduces the abundance of transcripts related to jasmonic acid biosynthesis and cysteine protease inhibitors when expressed in Nicotiana benthamiana relative to controls. 6K1 stability increased when cysteine protease activity was inhibited chemically, showing a mechanism to the rapid turnover of 6K1 when expressed in trans. Using RNAseq, qRT-PCR, and enzymatic assays, we demonstrate TuMV reprograms plant protein degradation pathways on the transcriptional level and increases 6K1 stability at later stages in the infection process. Moreover, we show 6K1 decreases plant protease activity in infected plants and increases TuMV accumulation in systemic leaves compared to controls. These results suggest 6K1 has a pro-viral function in addition to the anti-insect vector function we observed previously. Although the host targets of 6K1 and the impacts of 6K1-induced changes in protease activity on insect vectors are still unknown, this study enhances our understanding of the complex interactions occurring between plants, potyviruses, and vectors.


Subject(s)
Arabidopsis , Potyvirus , Peptide Hydrolases/metabolism , Plant Diseases , Potyvirus/metabolism , Proteolysis , Nicotiana , Viral Proteins/genetics , Viral Proteins/metabolism
3.
Commun Biol ; 5(1): 469, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35577926

ABSTRACT

Animals derive resources from their diet and allocate them to organismal functions such as growth, maintenance, reproduction, and dispersal. How variation in diet quality can affect resource allocation to life-history traits, in particular those important to locomotion and dispersal, is poorly understood. We hypothesize that, particularly for specialist herbivore insects that are in co-evolutionary arms races with host plants, changes in host plant will impact performance. From their coevolutionary arms-race with plants, to a complex migratory life history, Monarch butterflies are among the most iconic insect species worldwide. Population declines initiated international conservation efforts involving the replanting of a variety of milkweed species. However, this practice was implemented with little regard for how diverse defensive chemistry of milkweeds experienced by monarch larvae may affect adult fitness traits. We report that adult flight muscle investment, flight energetics, and maintenance costs depend on the host plant species of larvae, and correlate with concentration of milkweed-derived cardenolides sequestered by adults. Our findings indicate host plant species can impact monarchs by affecting fuel requirements for flight.


Subject(s)
Asclepias , Butterflies , Animals , Butterflies/physiology , Cardenolides , Herbivory , Larva
4.
Plant Cell ; 34(5): 1514-1531, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35277714

ABSTRACT

Hemipterans (such as aphids, whiteflies, and leafhoppers) are some of the most devastating insect pests due to the numerous plant pathogens they transmit as vectors, which are primarily viral. Over the past decade, tremendous progress has been made in broadening our understanding of plant-virus-vector interactions, yet on the molecular level, viruses and vectors have typically been studied in isolation of each other until recently. From that work, it is clear that both hemipteran vectors and viruses use effectors to manipulate host physiology and successfully colonize a plant and that co-evolutionary dynamics have resulted in effective host immune responses, as well as diverse mechanisms of counterattack by both challengers. In this review, we focus on advances in effector-mediated plant-virus-vector interactions and the underlying mechanisms. We propose that molecular synergisms in vector-virus interactions occur in cases where both the virus and vector benefit from the interaction (mutualism). To support this view, we show that mutualisms are common in virus-vector interactions and that virus and vector effectors target conserved mechanisms of plant immunity, including plant transcription factors, and plant protein degradation pathways. Finally, we outline ways to identify true effector synergisms in the future and propose future research directions concerning the roles effectors play in plant-virus-vector interactions.


Subject(s)
Aphids , Plant Viruses , Animals , Host-Pathogen Interactions , Insect Vectors/physiology , Plant Diseases , Plant Immunity/genetics , Plant Viruses/physiology , Plants
5.
Environ Entomol ; 50(4): 958-967, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34091658

ABSTRACT

Plant-soil feedbacks can mediate aboveground plant-herbivore interactions by impacting plant chemistry. Given that soil legacies and agricultural practices are closely tied, a better understanding of soil legacy cascades and their application in pest management are needed. We tested how cover crop legacies alter resistance to fall armyworm (Spodoptera frugiperda Smith, Lepidoptera: Noctuidae) in maize (Zea mays L., Poales: Poaceae). We compared herbivore performance and behavior of fall armyworm larvae on maize grown after four cover crop treatments: a leguminous mycorrhizal cover crop (pea: Pisum sativum L., Fabales: Fabaceae), a nonleguminous mycorrhizal cover crop (triticale: x Triticosecale Wittm. Ex A. Camus, Poales: Poaceae), a nonleguminous nonmycorrhizal cover crop (radish: Raphanus sativus L., Brassicales: Brassicaceae), and no cover crops (fallow). Soil inorganic N was highest in pea treatments and lowest in triticale treatments, while maize AMF colonization was greatest when grown after mycorrhizal cover crops compared to nonmycorrhizal or no cover crops. Cover crop legacies altered the emission of maize volatiles and fall armyworm larvae oriented toward odors emitted by maize grown after radish more frequently than triticale in olfactometer assays. Additionally, larvae performed better and consumed more leaf tissue when feeding on maize grown after radish and poorest on plants grown after triticale. When damaged by fall armyworm, maize grown after triticale expressed higher levels of lipoxygenase-3 (lox3), while plants grown after radish upregulated maize proteinase inhibitor (mpi) gene expression. Our results highlight the importance of appropriate cover crop selection and suggest that triticale could strengthen maize resistance to fall armyworm.


Subject(s)
Moths , Zea mays , Animals , Larva , Soil , Spodoptera
6.
BMC Plant Biol ; 21(1): 138, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33726668

ABSTRACT

BACKGROUND: Maize (Zea mays L.) is a major cereal crop, with the United States accounting for over 40% of the worldwide production. Corn leaf aphid [CLA; Rhopalosiphum maidis (Fitch)] is an economically important pest of maize and several other monocot crops. In addition to feeding damage, CLA acts as a vector for viruses that cause devastating diseases in maize. We have shown previously that the maize inbred line Mp708, which was developed by classical plant breeding, provides heightened resistance to CLA. However, the transcriptomic variation conferring CLA resistance to Mp708 has not been investigated. RESULTS: In this study, we contrasted the defense responses of the resistant Mp708 genotype to those of the susceptible Tx601 genotype at the transcriptomic (mRNA-seq) and volatile blend levels. Our results suggest that there was a greater transcriptomic remodeling in Mp708 plants in response to CLA infestation compared to the Tx601 plants. These transcriptomic signatures indicated an activation of hormonal pathways, and regulation of sesquiterpenes and terpenoid synthases in a constitutive and inducible manner. Transcriptomic analysis also revealed that the resistant Mp708 genotype possessed distinct regulation of ethylene and jasmonic acid pathways before and after aphid infestation. Finally, our results also highlight the significance of constitutive production of volatile organic compounds (VOCs) in Mp708 and Tx601 plants that may contribute to maize direct and/or indirect defense responses. CONCLUSIONS: This study provided further insights to understand the role of defense signaling networks in Mp708's resistance to CLA.


Subject(s)
Aphids , Crops, Agricultural/genetics , Crops, Agricultural/parasitology , Gene Expression Profiling , Herbivory , Zea mays/genetics , Zea mays/parasitology , Animals , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , United States
7.
Front Plant Sci ; 12: 631824, 2021.
Article in English | MEDLINE | ID: mdl-33679847

ABSTRACT

Silicon (Si) is a beneficial mineral that enhances plant protection against abiotic and biotic stresses, including insect herbivores. Si increases mechanical and biochemical defenses in a variety of plant species. However, the use of Si in agriculture remains poorly adopted despite its widely documented benefits in plant health. In this study, we tested the effect of Si supplementation on the induction of plant resistance against a chewing herbivore in crops with differential ability to accumulate this element. Our model system comprised the generalist herbivore fall armyworm (FAW) Spodoptera frugiperda and three economically important plant species with differential ability to uptake silicon: tomato (non-Si accumulator), soybean, and maize (Si-accumulators). We investigated the effects of Si supply and insect herbivory on the induction of physical and biochemical plant defenses, and herbivore growth using potted plants in greenhouse conditions. Herbivory and Si supply increased peroxidase (POX) activity and trichome density in tomato, and the concentration of phenolics in soybean. Si supplementation increased leaf Si concentration in all plants. Previous herbivory affected FAW larval weight gain in all plants tested, and the Si treatment further reduced weight gain of larvae fed on Si accumulator plants. Notably, our results strongly suggest that non-glandular trichomes are important reservoirs of Si in maize and may increase plant resistance to chewing herbivores. We conclude that Si offers transient resistance to FAW in soybean, and a more lasting resistance in maize. Si supply is a promising strategy in management programs of chewing herbivores in Si-accumulator plants.

8.
J Chem Ecol ; 46(1): 76-83, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31845135

ABSTRACT

Multiple species of phytophagous insects may co-occur on a plant and while plants can defend themselves from insect herbivory, plant responses to damage by different species and feeding guilds of insects may be asymmetric. Plants can trigger specific responses to elicitors/effectors in insect secretions altering herbivore performance. Recently, maize chitinases present in fall armyworm (FAW, Spodoptera frugiperda) frass were shown to act as effectors suppressing caterpillar-induced defenses in maize while increasing caterpillar performance. We investigated the effect of frass chitinase-mediated suppression of herbivore defenses in maize on the performance and preference of a subsequent insect herbivore from a different feeding guild, corn leaf aphid (Rhopalosiphum maidis). Aphid performance was highest on plants with FAW damage without frass chitinases compared to damaged plants with frass chitinases or undamaged plants. Plant exposure to frass chitinases post FAW damage also altered the production of herbivore-induced volatile compounds compared to damaged, buffer-treated plants. However, aphid preference to damaged, frass chitinase-treated plants was not different from damaged, buffer-treated plants or undamaged plants. This study suggests that frass effector-mediated alteration of plant defenses affects insect herbivores asymmetrically; while it enhances the performance of caterpillars, it suppresses the performance of subsequent herbivores from a different feeding guild.


Subject(s)
Aphids/physiology , Herbivory/physiology , Zea mays/chemistry , Animals , Aphids/growth & development , Chitinases/metabolism , Chitinases/pharmacology , Gas Chromatography-Mass Spectrometry , Larva/physiology , Plant Leaves/chemistry , Plant Leaves/drug effects , Plant Leaves/metabolism , Spodoptera/physiology , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Zea mays/metabolism
9.
Plant Cell Environ ; 42(11): 2999-3014, 2019 11.
Article in English | MEDLINE | ID: mdl-31314912

ABSTRACT

Root anatomical phenotypes vary among maize (Zea mays) cultivars and may have adaptive value by modifying the metabolic cost of soil exploration. However, the microbial trade-offs of these phenotypes are unknown. We hypothesized that nodal roots of maize with contrasting cortical anatomy have different patterns of mutualistic and pathogenic fungal colonization. Arbuscular mycorrhizal colonization in the field and mesocosms, root rots in the field, and Fusarium verticillioides colonization in mesocosms were evaluated in maize genotypes with contrasting root cortical anatomy. Increased aerenchyma and decreased living cortical area were associated with decreased mycorrhizal colonization in mesocosm and field experiments with inbred genotypes. In contrast, mycorrhizal colonization of hybrids increased with larger aerenchyma lacunae; this increase coincided with larger root diameters of hybrid roots. F. verticillioides colonization was inversely correlated with living cortical area in mesocosm-grown inbreds, and no relation was found between root rots and living cortical area or aerenchyma in field-grown hybrids. Root rots were positively correlated with cortical cell file number and inversely correlated with cortical cell size. Mycorrhizae and root rots were inversely correlated in field-grown hybrids. We conclude that root anatomy is associated with differential effects on pathogens and mycorrhizal colonization of nodal roots in maize.


Subject(s)
Mycorrhizae/metabolism , Plant Roots/anatomy & histology , Zea mays/anatomy & histology , Zea mays/microbiology , Fusarium/pathogenicity , Mycelium/growth & development , Mycelium/metabolism , Mycorrhizae/growth & development , Phenotype , Plant Diseases/microbiology , Plant Roots/cytology , Plant Roots/growth & development , Plant Roots/microbiology , Soil Microbiology , Symbiosis/physiology , Zea mays/growth & development , Zea mays/metabolism
10.
Proc Natl Acad Sci U S A ; 116(32): 15991-15996, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31332013

ABSTRACT

Plants produce suites of defenses that can collectively deter and reduce herbivory. Many defenses target the insect digestive system, with some altering the protective peritrophic matrix (PM) and causing increased permeability. The PM is responsible for multiple digestive functions, including reducing infections from potential pathogenic microbes. In our study, we developed axenic and gnotobiotic methods for fall armyworm (Spodoptera frugiperda) and tested how particular members present in the gut community influence interactions with plant defenses that can alter PM permeability. We observed interactions between gut bacteria with plant resistance. Axenic insects grew more but displayed lower immune-based responses compared with those possessing Enterococcus, Klebsiella, and Enterobacter isolates from field-collected larvae. While gut bacteria reduced performance of larvae fed on plants, none of the isolates produced mortality when injected directly into the hemocoel. Our results strongly suggest that plant physical and chemical defenses not only act directly upon the insect, but also have some interplay with the herbivore's microbiome. Combined direct and indirect, microbe-mediated assaults by maize defenses on the fall armyworm on the insect digestive and immune system reduced growth and elevated mortality in these insects. These results imply that plant-insect interactions should be considered in the context of potential mediation by the insect gut microbiome.


Subject(s)
Enterobacteriaceae/physiology , Plant Immunity , Spodoptera/microbiology , Zea mays/immunology , Zea mays/parasitology , Animals , Chitinases/metabolism , Genotype , Herbivory/physiology , Host-Pathogen Interactions , Spodoptera/growth & development , Spodoptera/ultrastructure , Syndrome , Trichomes/metabolism , Zea mays/genetics , Zea mays/ultrastructure
11.
J Exp Bot ; 70(2): 691-700, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30380091

ABSTRACT

Plants activate defense-related pathways in response to subtle abiotic or biotic disturbances, changing their volatile profile rapidly. How such perturbations reach and potentially affect neighboring plants is less understood. We evaluated whether brief and light touching had a cascade effect on the profile of volatiles and gene expression of the focal plant and a neighboring untouched plant. Within minutes after contact, Zea mays showed an up-regulation of certain defense genes and increased the emission of specific volatiles that primed neighboring plants, making them less attractive for aphids. Exposure to volatiles from touched plants activated many of the same defense-related genes in non-touched neighboring plants, demonstrating a transcriptional mirroring effect for expression of genes up-regulated by brief contact. Perception of so-far-overlooked touch-induced volatile organic compounds was of ecological significance as these volatiles are directly involved in plant-plant communication as an effective trigger for rapid defense synchronization among nearby plants. Our findings shed new light on mechanisms of plant responses to mechanical contact at the molecular level and on the ecological role of induced volatiles as airborne signals in plant-plant interactions.


Subject(s)
Volatile Organic Compounds/metabolism , Zea mays/metabolism , Animals , Aphids , Communication , Gene Expression , Herbivory , Touch
12.
New Phytol ; 218(1): 310-321, 2018 04.
Article in English | MEDLINE | ID: mdl-29332318

ABSTRACT

The underlying adaptive mechanisms by which insect strains are associated with specific plants are largely unknown. In this study, we investigated the role of herbivore-induced defenses in the host plant association of fall armyworm (Spodoptera frugiperda) strains. We tested the expression of herbivore-induced defense-related genes and the activity of plant-defensive proteins in maize and Bermuda grass upon feeding by fall armyworm strains. The rice strain caterpillars induced greater accumulation of proteinase inhibitors in maize than the corn strain caterpillars. In Bermuda grass, feeding by the corn strain suppressed induction of trypsin inhibitor activity whereas the rice strain induced greater activity levels. Differences in elicitation of these plant defenses by the two strains seems to be due to differences in the activity levels of the salivary enzyme phospholipase C. The levels of plant defense responses were negatively correlated with caterpillar growth, indicating a fitness effect. Our results indicate that specific elicitors in the saliva of fall armyworm stains trigger differential levels of plant defense responses that affect caterpillar growth and thus may influence host plant associations in field conditions. The composition and secretion of plant defense elicitors may have a strong influence in the host plant association of insect herbivores.


Subject(s)
Cynodon/immunology , Cynodon/parasitology , Plant Immunity , Spodoptera/physiology , Zea mays/immunology , Zea mays/parasitology , Animals , Body Weight , Glucose Oxidase/metabolism , Insect Proteins/metabolism , Larva/growth & development , Plant Leaves/parasitology , Saliva/enzymology , Species Specificity , Type C Phospholipases/metabolism
13.
J Exp Bot ; 69(5): 1207-1219, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29304231

ABSTRACT

Arabidopsis has been reported to respond to phosphate (Pi) stress by arresting primary root growth and increasing lateral root branching. We developed a system to buffer Pi availability to Arabidopsis in gel media systems by charging activated aluminum oxide particles with low and sufficient concentrations of Pi, based on previous work in horticultural and sand culture systems. This system more closely mimics soil chemistry and results in different growth and transcriptional responses to Pi stress compared with plants grown in standard gel media. Low Pi availability in buffered medium results in reduced root branching and preferential investment of resources in axial root growth. Root hair length and density, known responses to Pi stress, increase in low-buffered Pi medium. Plants grown under buffered Pi conditions have different gene expression profiles of canonical Pi stress response genes as compared with their unbuffered counterparts. The system also eliminates known complications with iron (Fe) nutrition. The growth responses of Arabidopsis supplied with buffered Pi indicate that the widely accepted low-Pi phenotype is an artifact of the standard gel-based growth system. Buffering Pi availability through the method presented here will improve the utility and accuracy of gel studies by more closely approximating soil conditions.


Subject(s)
Arabidopsis/physiology , Phosphates/metabolism , Aluminum Oxide/metabolism , Buffers
14.
J Chem Ecol ; 42(11): 1130-1141, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27704315

ABSTRACT

Plant defenses to insect herbivores have been studied in response to several insect behaviors on plants such as feeding, crawling, and oviposition. However, we have only scratched the surface about how insect feces induce plant defenses. In this study, we measured frass-induced plant defenses in maize, rice, cabbage, and tomato by chewing herbivores such as European corn borer (ECB), fall armyworm (FAW), cabbage looper (CL), and tomato fruit worm (TFW). We observed that caterpillar frass induced plant defenses are specific to each host-herbivore system, and they may induce herbivore or pathogen defense responses in the host plant depending on the composition of the frass deposited on the plant, the plant organ where it is deposited, and the species of insect. This study adds another layer of complexity in plant-insect interactions where analysis of frass-induced defenses has been neglected even in host-herbivore systems where naturally frass accumulates in enclosed feeding sites over extended periods of time.


Subject(s)
Magnoliopsida/physiology , Spodoptera/physiology , Animals , Brassica/chemistry , Brassica/microbiology , Brassica/physiology , Feeding Behavior/drug effects , Fruit/chemistry , Herbivory , Larva/drug effects , Solanum lycopersicum/chemistry , Solanum lycopersicum/microbiology , Solanum lycopersicum/physiology , Magnoliopsida/chemistry , Magnoliopsida/microbiology , Oryza/chemistry , Oryza/microbiology , Oryza/physiology , Plant Leaves/chemistry , Spodoptera/drug effects , Zea mays/chemistry , Zea mays/microbiology , Zea mays/physiology
15.
Plant Physiol ; 171(1): 694-706, 2016 05.
Article in English | MEDLINE | ID: mdl-26979328

ABSTRACT

The perception of herbivory by plants is known to be triggered by the deposition of insect-derived factors such as saliva and oral secretions, oviposition materials, and even feces. Such insect-derived materials harbor chemical cues that may elicit herbivore and/or pathogen-induced defenses in plants. Several insect-derived molecules that trigger herbivore-induced defenses in plants are known; however, insect-derived molecules suppressing them are largely unknown. In this study, we identified two plant chitinases from fall armyworm (Spodoptera frugiperda) larval frass that suppress herbivore defenses while simultaneously inducing pathogen defenses in maize (Zea mays). Fall armyworm larvae feed in enclosed whorls of maize plants, where frass accumulates over extended periods of time in close proximity to damaged leaf tissue. Our study shows that maize chitinases, Pr4 and Endochitinase A, are induced during herbivory and subsequently deposited on the host with the feces. These plant chitinases mediate the suppression of herbivore-induced defenses, thereby increasing the performance of the insect on the host. Pr4 and Endochitinase A also trigger the antagonistic pathogen defense pathway in maize and suppress fungal pathogen growth on maize leaves. Frass-induced suppression of herbivore defenses by deposition of the plant-derived chitinases Pr4 and Endochitinase A is a unique way an insect can co-opt the plant's defense proteins for its own benefit. It is also a phenomenon unlike the induction of herbivore defenses by insect oral secretions in most host-herbivore systems.


Subject(s)
Chitinases/metabolism , Herbivory , Plant Proteins/metabolism , Spodoptera/chemistry , Zea mays/enzymology , Animals , Ascomycota/pathogenicity , Chitin/metabolism , Chitinases/genetics , Feces/chemistry , Female , Host-Pathogen Interactions , Insect Proteins/metabolism , Larva , Plant Leaves , Proteomics/methods , Spodoptera/growth & development , Zea mays/microbiology
16.
J Chem Ecol ; 41(9): 781-92, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26306592

ABSTRACT

Caterpillar behaviors such as feeding, crawling, and oviposition are known to induce defenses in maize and other plant species. We examined plant defense responses to another important caterpillar behavior, their defecation. Fall armyworms (FAW, Spodoptera frugiperda), a major threat to maize (Zea mays), are voracious eaters and deposit copious amounts of frass in the enclosed whorl tissue surrounding their feeding site, where it remains for long periods of time. FAW frass is composed of molecules derived from the host plant, the insect itself, and associated microbes, and hence provides abundant cues that may alter plant defense responses. We observed that proteins from FAW frass initially induced wound-responsive defense genes in maize; however, a pathogenesis-related (pr) defense gene was induced as the time after application increased. Elicitation of pathogen defenses by frass proteins was correlated with increased herbivore performance and reduced fungal pathogen performance over time. These responses differ from the typical plant response to oral secretions of the FAW. The results pave the way for identification of protein molecule(s) from the excretion of an herbivore that elicits pathogen defense responses while attenuating herbivore defenses in plants.


Subject(s)
Ascomycota/physiology , Herbivory , Plant Diseases/microbiology , Spodoptera/physiology , Zea mays/microbiology , Zea mays/physiology , Animals , Gene Expression Regulation, Plant , Insect Proteins/metabolism , Plant Diseases/genetics , Ribosome Inactivating Proteins, Type 2/genetics , Ribosome Inactivating Proteins, Type 2/metabolism , Zea mays/genetics
17.
Curr Opin Plant Biol ; 26: 80-6, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26123394

ABSTRACT

Chewing herbivores cause massive damage when crushing plant tissues with their mandibles, thus releasing a vast array of cues that may be perceived by the plant to mobilize defenses. Besides releasing damage cues in wounded tissues, herbivores deposit abundant cues from their saliva, regurgitant and feces that trigger herbivore specific responses in plants. Herbivores can manipulate the perception mechanisms and defense signals to suppress plant defenses by secreting effectors and/or by exploiting their associated oral microbes. Recent studies indicate that both the composition of herbivore cues and the plant's ability to recognize them are highly dependent upon the specific plant-herbivore system. There is a growing amount of work on identifying herbivore elicitors and effectors, but the most significant bottleneck in the discipline is the identification and characterization of plant receptors that perceive these herbivore-specific cues.


Subject(s)
Insecta/pathogenicity , Plants/parasitology , Animals , Cues , Feeding Behavior/physiology , Gene Expression Regulation, Plant , Herbivory/physiology , Mastication
18.
Mol Plant Microbe Interact ; 27(5): 461-70, 2014 May.
Article in English | MEDLINE | ID: mdl-24329171

ABSTRACT

In addition to feeding damage, herbivores release cues that are recognized by plants to elicit defenses. Caterpillar oral secretions have been shown to trigger herbivore defense responses in several different plant species. In this study, the effects of two fall armyworm (Spodoptera frugiperda) oral secretions (saliva and regurgitant) on caterpillar defense responses in maize (Zea mays) were examined. Only minute amounts of regurgitant were deposited on the maize leaf during larval feeding bouts and its application to leaves failed to induce the expression of several herbivore defense genes. On the other hand, caterpillars consistently deposited saliva on leaves during feeding and the expression of several maize defense genes significantly increased in response to saliva application and larval feeding. However, feeding by ablated caterpillars with impaired salivation did not induce these defenses. Furthermore, bioassays indicated that feeding by unablated caterpillars significantly enhanced defenses when compared with that of ablated caterpillars. Another critical finding was that the maize genotype and stage of development affected the expression of defense genes in response to wounding and regurgitant treatments. These results demonstrate that fall armyworm saliva contains elicitors that trigger herbivore defenses in maize.


Subject(s)
Gene Expression Regulation, Plant , Plant Diseases/immunology , Plant Immunity , Spodoptera/physiology , Zea mays/immunology , Animals , Cues , Feeding Behavior , Genotype , Herbivory , Larva , Plant Diseases/parasitology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/parasitology , Plant Leaves/physiology , Plant Proteins/genetics , Saliva , Spodoptera/cytology , Wounds and Injuries , Zea mays/genetics , Zea mays/parasitology , Zea mays/physiology
19.
New Phytol ; 201(3): 928-939, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24304477

ABSTRACT

Some plant-derived anti-herbivore defensive proteins are induced by insect feeding, resist digestion in the caterpillar gut and are eliminated in the frass. We have identified several maize proteins in fall armyworm (Spodoptera frugiperda) frass that potentially play a role in herbivore defense. Furthermore, the toxicity of one of these proteins, ribosome-inactivating protein 2 (RIP2), was assessed and factors regulating its accumulation were determined. To understand factors regulating RIP2 protein accumulation, maize (Zea mays) plants were infested with fall armyworm larvae or treated with exogenous hormones. The toxicity of recombinant RIP2 protein against fall armyworm was tested. The results show that RIP2 protein is synthesized as an inactive proenzyme that can be processed in the caterpillar gut. Also, caterpillar feeding, but not mechanical wounding, induced foliar RIP2 protein accumulation. Quantitative real-time PCR indicated that RIP2 transcripts were rapidly induced (1 h) and immunoblot analysis indicated that RIP2 protein accumulated soon after attack and was present in the leaf for up to 4 d after caterpillar removal. Several phytohormones, including methyl jasmonate, ethylene, and abscisic acid, regulated RIP2 protein expression. Furthermore, bioassays of purified recombinant RIP2 protein against fall armyworm significantly retarded caterpillar growth. We conclude that the toxic protein RIP2 is induced by caterpillar feeding and is one of a potential suite of proteins that defend maize against chewing herbivores.


Subject(s)
Ribosome Inactivating Proteins, Type 2/metabolism , Spodoptera/physiology , Zea mays/metabolism , Zea mays/parasitology , Animals , Gene Expression Regulation, Plant/drug effects , Genes, Plant/genetics , Herbivory/drug effects , Immunoblotting , Larva/drug effects , Larva/growth & development , Plant Growth Regulators/pharmacology , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Leaves/parasitology , Recombinant Proteins/pharmacology , Ribosome Inactivating Proteins, Type 2/genetics , Spodoptera/drug effects , Spodoptera/growth & development , Time Factors , Zea mays/genetics , Zea mays/growth & development
20.
New Phytol ; 199(1): 66-73, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23627593

ABSTRACT

Plants turn on induced defenses upon insect herbivory. In the current study, we evaluated the role of European corn borer (ECB) elicitors (molecules secreted by herbivores) that either induce/suppress defenses in Solanum lycopersicum (tomato) and Zea mays (maize), two very important crop plants that are grown for food and/or fuel throughout the world. We used a combination of molecular, biochemical, confocal and scanning electron microscopy, caterpillar spinneret ablation/cauterization, and conventional insect bioassay methods to determine the role of ECB elicitors in modulating defenses in both tomato and maize crop plants. Our results clearly demonstrate that the components present in the ECB saliva induce defense-related proteinase inhibitors in both tomato (PIN2) and maize (MPI). Presence of glucose oxidase in the ECB saliva induced defenses in tomato, but not in maize. However, ECB saliva induced genes present in the jasmonic acid biosynthesis pathway in both tomato and maize. Although ECB saliva can induce defenses in both tomato and maize, our results suggest that host-specific salivary components are responsible for inducing host plant defenses. Proteomic analysis of ECB salivary elicitors and plant receptors/signaling mechanisms involved in recognizing different ECB elicitors remains to be determined.


Subject(s)
Herbivory , Lepidoptera/physiology , Salivary Glands/metabolism , Solanum lycopersicum/physiology , Zea mays/physiology , Animals , Glucose Oxidase/metabolism , Microscopy, Confocal , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...