Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 86: 166-173, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25500453

ABSTRACT

A recent proposal to mitigate the effects of climatic change and reduce water consumption in agriculture is to develop cultivars with high water-use efficiency. The aims of this study were to characterize this trait as a differential response mechanism to water-limitation in two bean cultivars contrasting in their water stress tolerance, to isolate and identify gene fragments related to this response in a model cultivar, as well as to evaluate transcription levels of genes previously identified. Keeping CO2 assimilation through a high photosynthesis rate under limited conditions was the physiological response which allowed the cultivar model to maintain its growth and seed production with less water. Chloroplast genes stood out among identified genetic elements, which confirmed the importance of photosynthesis in such response. ndhK, rpoC2, rps19, rrn16, ycf1 and ycf2 genes were expressed only in response to limited water availability.


Subject(s)
Fabaceae/genetics , Genes, Chloroplast/genetics , Genes, Plant/genetics , Photosynthesis/genetics , Water/metabolism , Adaptation, Physiological/genetics , Biomass , Droughts , Fabaceae/classification , Fabaceae/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Reverse Transcriptase Polymerase Chain Reaction , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...