Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Parasite ; 31: 13, 2024.
Article in English | MEDLINE | ID: mdl-38450719

ABSTRACT

Tsetse flies (genus Glossina) transmit deadly trypanosomes to human populations and domestic animals in sub-Saharan Africa. Some foci of Human African Trypanosomiasis due to Trypanosoma brucei gambiense (g-HAT) persist in southern Chad, where a program of tsetse control was implemented against the local vector Glossina fuscipes fuscipes in 2018 in Maro. We analyzed the population genetics of G. f. fuscipes from the Maro focus before control (T0), one year (T1), and 18 months (T2) after the beginning of control efforts. Most flies captured displayed a local genetic profile (local survivors), but a few flies displayed outlier genotypes. Moreover, disturbance of isolation by distance signature (increase of genetic distance with geographic distance) and effective population size estimates, absence of any genetic signature of a bottleneck, and an increase of genetic diversity between T0 and T2 strongly suggest gene flows from various origins, and a limited impact of the vector control efforts on this tsetse population. Continuous control and surveillance of g-HAT transmission is thus recommended in Maro. Particular attention will need to be paid to the border with the Central African Republic, a country where the entomological and epidemiological status of g-HAT is unknown.


Title: Impact limité de la lutte antivectorielle sur la structure des populations de Glossina fuscipes fuscipes dans le foyer de la maladie du sommeil de Maro, Tchad. Abstract: Les mouches tsé-tsé (genre Glossina) transmettent des trypanosomes mortels aux populations humaines ainsi qu'aux animaux domestiques en Afrique sub-saharienne. Certains foyers de la trypanosomiase humaine Africaine due à Trypanosoma brucei gambiense (THA-g) persistent au sud du Tchad, où un programme de lutte antivectorielle a été mis en place contre le vecteur local de la maladie, Glossina fuscipes fuscipes, en particulier à Maro en 2018. Nous avons analysé la structure génétique des populations de G. f. fuscipes de ce foyer à T0 (avant lutte), une année après le début de la lutte (T1), et 18 mois après (T2). La plupart des mouches capturées après le début de la lutte ont montré un profil génétique local (survivants locaux), mais quelques-unes d'entre elles présentaient des génotypes d'individus atypiques. Par ailleurs, la présence de perturbations des signatures d'isolement par la distance (augmentation de la distance génétique avec la distance géographique), l'absence de signature génétique d'un goulot d'étranglement, et un accroissement de la diversité génétique entre T0 et T2 sont des arguments forts en faveur de la recolonisation de la zone par des mouches d'origines variées, tout en témoignant des effets limités de la campagne de lutte dans ce foyer. Ces résultats conduisent à recommander une lutte et une surveillance continues dans le foyer de Maro. Une attention particulière devra par ailleurs être prêtée à l'autre côté de la rive, située côté République Centre Africaine, dont le statut épidémiologique reste inconnu concernant les tsé-tsé et la THA-g.


Subject(s)
Spiders , Trypanosomiasis, African , Tsetse Flies , Animals , Humans , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/prevention & control , Tsetse Flies/genetics , Chad/epidemiology , Trypanosoma brucei gambiense/genetics , Animals, Domestic
2.
Med Trop Sante Int ; 3(1)2023 03 31.
Article in French | MEDLINE | ID: mdl-37525637

ABSTRACT

Human African Trypanosomiasis (HAT) is caused by Trypanosoma brucei which is transmitted by the tsetse fly insect vector (Glossina spp). It is one of the 20 Neglected Tropical Diseases (NTD) listed by the WHO. These diseases affect the poorest and most vulnerable communities, for which the WHO has established a dedicated 2021-2030 roadmap. At the time of Alphonse Laveran, HAT devastated the African continent. In the 1960s, the disease was nearly under control, but it strongly re-emerged in the 1990s. A coordinated effort of all stakeholders, with national control programs as the main actors, a strong contribution of research and important donations by the private sector, allowed to decrease the HAT burden significantly. Since 2018, less than 1000 cases are detected annually. We here review new diagnostics, treatments and vector control tools that have been implemented jointly and successfully in several endemic countries.The next key challenge will be to sustain the gains. Newly emerging research questions include long-term carriage of trypanosomes and adaptation of tools to low prevalence contexts. Challenges out of the research area comprise the continued need of funding, maintenance of dedicated human resources, and the key question of access. Sustainable elimination as "interruption of transmission", which is the 2030 NTD roadmap target, can be reached, if these challenges are solved. We stress the importance of continuing to combine the efforts in the fight against the disease, because sustainable elimination of HAT is the best long-term prevention strategy against re-emergence. As such, HAT elimination can serve as an example for other infectious diseases.


Subject(s)
Trypanosoma brucei brucei , Trypanosomiasis, African , Tsetse Flies , Animals , Humans , Trypanosomiasis, African/epidemiology , Trypanosoma brucei gambiense , Insect Vectors , Neglected Diseases/epidemiology
3.
Parasit Vectors ; 16(1): 111, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36949538

ABSTRACT

BACKGROUND: Human African trypanosomiasis (HAT) is a neglected tropical disease caused by Trypanosoma brucei gambiense transmitted by tsetse flies in sub-Saharan West Africa. In southern Chad the most active and persistent focus is the Mandoul focus, with 98% of the reported human cases, and where African animal trypanosomosis (AAT) is also present. Recently, a control project to eliminate tsetse flies (Glossina fuscipes fuscipes) in this focus using the sterile insect technique (SIT) was initiated. However, the release of large numbers of sterile males of G. f. fuscipes might result in a potential temporary increase in transmission of trypanosomes since male tsetse flies are also able to transmit the parasite. The objective of this work was therefore to experimentally assess the vector competence of sterile males treated with isometamidium for Trypanosoma brucei brucei. METHODS: An experimental infection was set up in the laboratory, mimicking field conditions: the same tsetse species that is present in Mandoul was used. A T. b. brucei strain close to T. b. gambiense was used, and the ability of the sterile male tsetse flies fed on blood with and without a trypanocide to acquire and transmit trypanosomes was measured. RESULTS: Only 2% of the experimentally infected flies developed an immature infection (midgut) while none of the flies developed a metacyclic infection of T. b. brucei in the salivary glands. We did not observe any effect of the trypanocide used (isometamidium chloride at 100 mg/l) on the development of infection in the flies. CONCLUSIONS: Our results indicate that sterile males of the tested strain of G. f. fuscipes were unable to cyclically transmit T. b. brucei and might even be refractory to the infection. The data of the research indicate that the risk of cyclical transmission of T. brucei by sterile male G. f. fuscipes of the strain colonized at IAEA for almost 40 years appears to be small.


Subject(s)
Infertility, Male , Trypanocidal Agents , Trypanosoma brucei brucei , Trypanosoma , Trypanosomiasis, African , Tsetse Flies , Animals , Male , Humans , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/prevention & control , Trypanosomiasis, African/parasitology , Tsetse Flies/parasitology , Chad/epidemiology , Insecta
4.
Parasit Vectors ; 16(1): 66, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36788608

ABSTRACT

BACKGROUND: Domesticated animals play a role in maintaining residual transmission of Plasmodium parasites of humans, by offering alternative blood meal sources for malaria vectors to survive on. However, the blood of animals treated with veterinary formulations of the anti-helminthic drug ivermectin can have an insecticidal effect on adult malaria vector mosquitoes. This study therefore assessed the effects of treating cattle with long-acting injectable formulations of ivermectin on the survival of an important malaria vector species, to determine whether it has potential as a complementary vector control measure. METHODS: Eight head of a local breed of cattle were randomly assigned to either one of two treatment arms (2 × 2 cattle injected with one of two long-acting formulations of ivermectin with the BEPO® technology at the therapeutic dose of 1.2 mg/kg), or one of two control arms (2 × 2 cattle injected with the vehicles of the formulations). The lethality of the formulations was evaluated on 3-5-day-old Anopheles coluzzii mosquitoes through direct skin-feeding assays, from 1 to 210 days after treatment. The efficacy of each formulation was evaluated and compared using Cox proportional hazards survival models, Kaplan-Meier survival estimates, and log-logistic regression on cumulative mortality. RESULTS: Both formulations released mosquitocidal concentrations of ivermectin until 210 days post-treatment (hazard ratio > 1). The treatments significantly reduced mosquito survival, with average median survival time of 4-5 days post-feeding. The lethal concentrations to kill 50% of the Anopheles (LC50) before they became infectious (10 days after an infectious blood meal) were maintained for 210 days post-injection for both formulations. CONCLUSIONS: This long-lasting formulation of ivermectin injected in cattle could complement insecticide-treated nets by suppressing field populations of zoophagic mosquitoes that are responsible, at least in part, for residual malaria transmission. The impact of this approach will of course depend on the field epidemiological context. Complementary studies will be necessary to characterize ivermectin withdrawal times and potential environmental toxicity.


Subject(s)
Anopheles , Insecticides , Malaria , Animals , Cattle , Insecticides/pharmacology , Ivermectin , Malaria/prevention & control , Malaria/veterinary , Malaria/parasitology , Mosquito Control , Mosquito Vectors/parasitology
5.
Parasit Vectors ; 15(1): 72, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35246216

ABSTRACT

BACKGROUND: African animal trypanosomosis (AAT), transmitted by tsetse flies, is arguably the main disease constraint to integrated crop-livestock agriculture in sub-Saharan Africa, and African heads of state and governments adopted a resolution to rid the continent of this scourge. In order to sustainably reduce or eliminate the burden of AAT, a progressive and evidence-based approach is needed, which must hinge on harmonized, spatially explicit information on the occurrence of AAT and its vectors. METHODS: A digital repository was assembled, containing tsetse and AAT data collected in Burkina Faso between 1990 and 2019. Data were collected either in the framework of control activities or for research purposes. Data were systematically verified, harmonized, georeferenced and integrated into a database (PostgreSQL). Entomological data on tsetse were mapped at the level of individual monitoring traps. When this was not possible, mapping was done at the level of site or location. Epidemiological data on AAT were mapped at the level of location or village. RESULTS: Entomological data showed the presence of four tsetse species in Burkina Faso. Glossina tachinoides, present from the eastern to the western part of the country, was the most widespread and abundant species (56.35% of the catches). Glossina palpalis gambiensis was the second most abundant species (35.56%), and it was mainly found in the west. Glossina morsitans submorsitans was found at lower densities (6.51%), with a patchy distribution in the southern parts of the country. A single cluster of G. medicorum was detected (less than 0.25%), located in the south-west. Unidentified tsetse flies accounted for 1.33%. For the AAT component, data for 54,948 animal blood samples were assembled from 218 geographic locations. The samples were tested with a variety of diagnostic methods. AAT was found in all surveyed departments, including the tsetse-free areas in the north. Trypanosoma vivax and T. congolense infections were the dominant ones, with a prevalence of 5.19 ± 18.97% and 6.11 ± 21.56%, respectively. Trypanosoma brucei infections were detected at a much lower rate (0.00 ± 0.10%). CONCLUSIONS: The atlas provides a synoptic view of the available information on tsetse and AAT distribution in Burkina Faso. Data are very scanty for most of the tsetse-free areas in the northern part of the country. Despite this limitation, this study generated a robust tool for targeting future surveillance and control activities. The development of the atlas also strengthened the collaboration between the different institutions involved in tsetse and AAT research and control in Burkina Faso, which will be crucial for future updates and the sustainability of the initiative.


Subject(s)
Trypanosoma , Trypanosomiasis, African , Tsetse Flies , Animals , Burkina Faso/epidemiology , Insect Vectors , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/prevention & control , Trypanosomiasis, African/veterinary
6.
Sci Rep ; 12(1): 3322, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35228552

ABSTRACT

The sterile insect technique (SIT) is an environment friendly and sustainable method to manage insect pests of economic importance through successive releases of sterile irradiated males of the targeted species to a defined area. A mating of a sterile male with a virgin wild female will result in no offspring, and ultimately lead to the suppression or eradication of the targeted population. Tsetse flies, vectors of African Trypanosoma, have a highly regulated and defined microbial fauna composed of three bacterial symbionts that may have a role to play in the establishment of Trypanosoma infections in the flies and hence, may influence the vectorial competence of the released sterile males. Sodalis bacteria seem to interact with Trypanosoma infection in tsetse flies. Field-caught tsetse flies of ten different taxa and from 15 countries were screened using PCR to detect the presence of Sodalis and Trypanosoma species and analyse their interaction. The results indicate that the prevalence of Sodalis and Trypanosoma varied with country and tsetse species. Trypanosome prevalence was higher in east, central and southern African countries than in west African countries. Tsetse fly infection rates with Trypanosoma vivax and T. brucei sspp were higher in west African countries, whereas tsetse infection with T. congolense and T. simiae, T. simiae (tsavo) and T. godfreyi were higher in east, central and south African countries. Sodalis prevalence was high in Glossina morsitans morsitans and G. pallidipes but absent in G. tachinoides. Double and triple infections with Trypanosoma taxa and coinfection of Sodalis and Trypanosoma were rarely observed but it occurs in some taxa and locations. A significant Chi square value (< 0.05) seems to suggest that Sodalis and Trypanosoma infection correlate in G. palpalis gambiensis, G. pallidipes and G. medicorum. Trypanosoma infection seemed significantly associated with an increased density of Sodalis in wild G. m. morsitans and G. pallidipes flies, however, there was no significant impact of Sodalis infection on trypanosome density.


Subject(s)
Trypanosoma , Trypanosomiasis, African , Tsetse Flies , Animals , Enterobacteriaceae , Female , Insect Vectors/microbiology , Male , Prevalence , Symbiosis , Trypanosoma/genetics , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/prevention & control , Tsetse Flies/microbiology
7.
PLoS Negl Trop Dis ; 16(1): e0010033, 2022 01.
Article in English | MEDLINE | ID: mdl-34986176

ABSTRACT

BACKGROUND: Work to control the gambiense form of human African trypanosomiasis (gHAT), or sleeping sickness, is now directed towards ending transmission of the parasite by 2030. In order to supplement gHAT case-finding and treatment, since 2011 tsetse control has been implemented using Tiny Targets in a number of gHAT foci. As this intervention is extended to new foci, it is vital to understand the costs involved. Costs have already been analysed for the foci of Arua in Uganda and Mandoul in Chad. This paper examines the costs of controlling Glossina palpalis palpalis in the focus of Bonon in Côte d'Ivoire from 2016 to 2017. METHODOLOGY/PRINCIPAL FINDINGS: Some 2000 targets were placed throughout the main gHAT transmission area of 130 km2 at a density of 14.9 per km2. The average annual cost was USD 0.5 per person protected, USD 31.6 per target deployed of which 12% was the cost of the target itself, or USD 471.2 per km2 protected. Broken down by activity, 54% was for deployment and maintenance of targets, 34% for tsetse surveys/monitoring and 12% for sensitising populations. CONCLUSIONS/SIGNIFICANCE: The cost of tsetse control per km2 of the gHAT focus protected in Bonon was more expensive than in Chad or Uganda, while the cost per km2 treated, that is the area where the targets were actually deployed, was cheaper. Per person protected, the Bonon cost fell between the two, with Uganda cheaper and Chad more expensive. In Bonon, targets were deployed throughout the protected area, because G. p. palpalis was present everywhere, whereas in Chad and Uganda G. fuscipes fuscipes was found only the riverine fringing vegetation. Thus, differences between gHAT foci, in terms of tsetse ecology and human geography, impact on the cost-effectiveness of tsetse control. It also demonstrates the need to take into account both the area treated and protected alongside other impact indicators, such as the cost per person protected.


Subject(s)
Endemic Diseases/prevention & control , Insect Control/methods , Insecticides/pharmacology , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/prevention & control , Tsetse Flies , Animals , Chad/epidemiology , Cote d'Ivoire/epidemiology , Forests , Humans , Insect Control/economics , Insect Vectors , Trypanosoma brucei gambiense , Trypanosomiasis, African/transmission , Uganda/epidemiology
8.
PLoS Negl Trop Dis ; 15(6): e0009404, 2021 06.
Article in English | MEDLINE | ID: mdl-34181651

ABSTRACT

BACKGROUND: Gambian human African trypanosomiasis (gHAT) is a neglected tropical disease caused by Trypanosoma brucei gambiense transmitted by tsetse flies (Glossina). In Côte d'Ivoire, Bonon is the most important focus of gHAT, with 325 cases diagnosed from 2000 to 2015 and efforts against gHAT have relied largely on mass screening and treatment of human cases. We assessed whether the addition of tsetse control by deploying Tiny Targets offers benefit to sole reliance on the screen-and-treat strategy. METHODOLOGY AND PRINCIPAL FINDINGS: In 2015, we performed a census of the human population of the Bonon focus, followed by an exhaustive entomological survey at 278 sites. After a public sensitization campaign, ~2000 Tiny Targets were deployed across an area of 130 km2 in February of 2016, deployment was repeated annually in the same month of 2017 and 2018. The intervention's impact on tsetse was evaluated using a network of 30 traps which were operated for 48 hours at three-month intervals from March 2016 to December 2018. A second comprehensive entomological survey was performed in December 2018 with traps deployed at 274 of the sites used in 2015. Sub-samples of tsetse were dissected and examined microscopically for presence of trypanosomes. The census recorded 26,697 inhabitants residing in 331 settlements. Prior to the deployment of targets, the mean catch of tsetse from the 30 monitoring traps was 12.75 tsetse/trap (5.047-32.203, 95%CI), i.e. 6.4 tsetse/trap/day. Following the deployment of Tiny Targets, mean catches ranged between 0.06 (0.016-0.260, 95%CI) and 0.55 (0.166-1.794, 95%CI) tsetse/trap, i.e. 0.03-0.28 tsetse/trap/day. During the final extensive survey performed in December 2018, 52 tsetse were caught compared to 1,909 in 2015, with 11.6% (5/43) and 23.1% (101/437) infected with Trypanosoma respectively. CONCLUSIONS: The annual deployment of Tiny Targets in the gHAT focus of Bonon reduced the density of Glossina palpalis palpalis by >95%. Tiny Targets offer a powerful addition to current strategies towards eliminating gHAT from Côte d'Ivoire.


Subject(s)
Insect Control/methods , Insect Vectors/parasitology , Trypanosoma brucei gambiense , Trypanosomiasis, African/prevention & control , Tsetse Flies/parasitology , Animals , Cote d'Ivoire/epidemiology , Humans , Insect Vectors/physiology , Tsetse Flies/physiology
9.
PLoS Negl Trop Dis ; 14(11): e0008738, 2020 11.
Article in English | MEDLINE | ID: mdl-33180776
10.
Parasit Vectors ; 13(1): 419, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32795375

ABSTRACT

BACKGROUND: Since 2012, the World Health Organisation and the countries affected by the Gambian form of human African trypanosomiasis (HAT) have been committed to eliminating the disease, primarily through active case-finding and treatment. To interrupt transmission of Trypanosoma brucei gambiense and move more rapidly towards elimination, it was decided to add vector control using 'tiny targets'. Chad's Mandoul HAT focus extends over 840 km2, with a human population of 39,000 as well as 14,000 cattle and 3000 pigs. Some 2700 tiny targets were deployed annually from 2014 onwards. METHODS: A protocol was developed for the routine collection of tsetse control costs during all field missions. This was implemented throughout 2015 and 2016, and combined with the recorded costs of the preliminary survey and sensitisation activities. The objective was to calculate the full costs at local prices in Chad. Costs were adjusted to remove research components and to ensure that items outside the project budget lines were included, such as administrative overheads and a share of staff salaries. RESULTS: Targets were deployed at about 60 per linear km of riverine tsetse habitat. The average annual cost of the operation was USD 56,113, working out at USD 66.8 per km2 protected and USD 1.4 per person protected. Of this, 12.8% was an annual share of the initial tsetse survey, 40.6% for regular tsetse monitoring undertaken three times a year, 36.8% for target deployment and checking and 9.8% for sensitisation of local populations. Targets accounted for 8.3% of the cost, and the cost of delivering a target was USD 19.0 per target deployed. CONCLUSIONS: This study has confirmed that tiny targets provide a consistently low cost option for controlling tsetse in gambiense HAT foci. Although the study area is remote with a tsetse habitat characterised by wide river marshes, the costs were similar to those of tiny target work in Uganda, with some differences, in particular a higher cost per target delivered. As was the case in Uganda, the cost was between a quarter and a third that of historical target operations using full size targets or traps.


Subject(s)
Costs and Cost Analysis , Insect Control , Trypanosomiasis, African , Tsetse Flies , Animals , Cattle , Chad/epidemiology , Humans , Insect Control/economics , Insect Control/methods , Insect Vectors/parasitology , Insecticides/economics , Trypanosomiasis, African/prevention & control , Trypanosomiasis, African/transmission , Tsetse Flies/parasitology
11.
Parasit Vectors ; 13(1): 266, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32434542

ABSTRACT

BACKGROUND: The sterile insect technique (SIT) is a vector control strategy relying on the mass release of sterile males into wild vector populations. Current sex separation techniques are not fully efficient and could lead to the release of a small proportion of females. It is therefore important to evaluate the effect of irradiation on the ability of released females to transmit pathogens. This study aimed to assess the effect of irradiation on the survival and competence of Anopheles arabiensis females for Plasmodium falciparum in laboratory conditions. METHODS: Pupae were irradiated at 95 Gy of gamma-rays, and emerging females were challenged with one of 14 natural isolates of P. falciparum. Seven days post-blood meal (dpbm), irradiated and unirradiated-control females were dissected to assess the presence of oocysts, using 8 parasite isolates. On 14 dpbm, sporozoite dissemination in the head/thorax was also examined, using 10 parasites isolates including 4 in common with the 7 dpbm dissection (oocyst data). The survivorship of irradiated and unirradiated-control mosquitoes was monitored. RESULTS: Overall, irradiation reduced the proportion of mosquitoes infected with the oocyst stages by 17% but this effect was highly inconsistent among parasite isolates. Secondly, there was no significant effect of irradiation on the number of developing oocysts. Thirdly, there was no significant difference in both the sporozoite infection rate and load between the irradiated and unirradiated-control mosquitoes. Fourthly, irradiation had varying effects on female survival with either a negative effect or no effect. CONCLUSIONS: The effect of irradiation on mosquito competence strongly varied among parasite isolates. Because of such isolate variability and, the fact that different parasite isolates were used to collect oocyst and sporozoite data, the irradiation-mediated reduction of oocyst prevalence was not confirmed for the sporozoite stages. Our data indicate that irradiated female An. arabiensis could contribute to malaria transmission, and highlight the need for perfect sexing tools, which would prevent the release of females as part of SIT programmes.


Subject(s)
Anopheles/parasitology , Anopheles/radiation effects , Gamma Rays , Mosquito Control/methods , Plasmodium falciparum/physiology , Animals , Anopheles/physiology , Blood , Feeding Behavior , Female , Mosquito Vectors/parasitology , Mosquito Vectors/radiation effects , Oocysts/physiology , Pupa/radiation effects
12.
PLoS One ; 14(5): e0216802, 2019.
Article in English | MEDLINE | ID: mdl-31086401

ABSTRACT

BACKGROUND: The sterile insect technique (SIT) requires mass-rearing of the target species, irradiation to induce sexual sterility and transportation from the mass-rearing facility to the target site. Those treatments require several steps that may affect the biological quality of sterile males. This study has been carried out to evaluate the relative impact of chilling, irradiation and transport on emergence rate, flight ability and survival of sterile male Glossina palpalis gambiensis. RESULTS: Chilling, irradiation and transport all affected the quality control parameters studied. The emergence rate was significantly reduced by long chilling periods and transport, i.e. from 92% at the source insectary in Burkina Faso to 78% upon arrival in Senegal. Flight ability was affected by all three parameters with 31% operational flies lost between the production facility and the destination site. Only survival under stress was not affected by any of the treatments. CONCLUSION: The chilling period and transport were the main factors that impacted significantly the quality of sterile male pupae. Therefore, in the operational programme, the delivery of sterile male pupae was divided over two shipments per week to reduce the chilling time and improve the quality of the sterile males. Quality of the male pupae may further be improved by reducing the transport time and vibrations during transport.


Subject(s)
Pest Control, Biological/methods , Tsetse Flies/physiology , Animals , Burkina Faso , Cold Temperature , Infertility, Male/etiology , Infertility, Male/veterinary , Male , Pupa/physiology , Pupa/radiation effects , Reproduction , Senegal , Transportation , Tsetse Flies/radiation effects
13.
Parasit Vectors ; 11(1): 641, 2018 Dec 17.
Article in English | MEDLINE | ID: mdl-30558681

ABSTRACT

BACKGROUND: The sterile insect technique (SIT) aims at suppressing or decreasing insect pest populations by introducing sterile insects into wild populations. SIT requires the mass-production of insects and their sterilization through, for example, radiation. However, both mass-rearing and radiation can affect the life history traits of insects making them less competitive than their wild counterparts. In the malaria mosquito Anopheles arabiensis, some progress has been made to improve the mating competitiveness of mass-reared irradiated males. However, to date, no study has explored the relative effects of colonization and irradiation on important reproductive traits in this species. Such data may help to focus research efforts more precisely to improve current techniques. METHODS: Two strains of An. arabiensis originating from the same locality were used: one reared in the laboratory for five generations and the second collected as late larval instars in the field prior to experimentation. Pupae were irradiated with 95 Gy and some adult reproductive traits, including insemination rate, fecundity, oviposition behavior, fertility and male survivorship, were assessed in different mating combinations. RESULTS: Our study revealed the different effects of mosquito strain and irradiation on reproductive processes. The insemination rate was higher in field (67.3%) than in laboratory (54.9%) females and was negatively affected by both female and male irradiation (un-irradiated vs irradiated: 70.2 vs 51.3% in females; 67.7 vs 53.7% in males). Irradiated females did not produce eggs and egg prevalence was lower in the field strain (75.4%) than in the laboratory strain (83.9%). The hatching rate was higher in the field strain (88.7%) than in the laboratory strain (70.6%) as well as in un-irradiated mosquitoes (96.5%) than in irradiated ones (49%). Larval viability was higher in the field strain (96.2%) than in the laboratory strain (78.5%) and in un-irradiated mosquitoes (97.6%) than irradiated ones (52%). Finally, field males lived longer than laboratory males (25.1 vs 20.5 days, respectively). CONCLUSIONS: Our results revealed that both irradiation and colonization alter reproductive traits. However, different developmental stages are not equally affected. It is necessary to consider as many fitness traits as possible to evaluate the efficacy of the sterile insect technique.


Subject(s)
Anopheles/physiology , Anopheles/radiation effects , Mosquito Control/methods , Animals , Female , Male , Mosquito Vectors/physiology , Mosquito Vectors/radiation effects , Oviposition/radiation effects , Pupa/physiology , Pupa/radiation effects , Radiation , Reproduction/radiation effects , Sexual Behavior, Animal/radiation effects
14.
BMC Microbiol ; 18(Suppl 1): 153, 2018 11 23.
Article in English | MEDLINE | ID: mdl-30470187

ABSTRACT

BACKGROUND: Tsetse flies are vectors of African trypanosomes, protozoan parasites that cause sleeping sickness (or human African trypanosomosis) in humans and nagana (or animal African trypanosomosis) in livestock. In addition to trypanosomes, four symbiotic bacteria Wigglesworthia glossinidia, Sodalis glossinidius, Wolbachia, Spiroplasma and one pathogen, the salivary gland hypertrophy virus (SGHV), have been reported in different tsetse species. We evaluated the prevalence and coinfection dynamics between Wolbachia, trypanosomes, and SGHV in four tsetse species (Glossina palpalis gambiensis, G. tachinoides, G. morsitans submorsitans, and G. medicorum) that were collected between 2008 and 2015 from 46 geographical locations in West Africa, i.e. Burkina Faso, Mali, Ghana, Guinea, and Senegal. RESULTS: The results indicated an overall low prevalence of SGHV and Wolbachia and a high prevalence of trypanosomes in the sampled wild tsetse populations. The prevalence of all three infections varied among tsetse species and sample origin. The highest trypanosome prevalence was found in Glossina tachinoides (61.1%) from Ghana and in Glossina palpalis gambiensis (43.7%) from Senegal. The trypanosome prevalence in the four species from Burkina Faso was lower, i.e. 39.6% in Glossina medicorum, 18.08%; in Glossina morsitans submorsitans, 16.8%; in Glossina tachinoides and 10.5% in Glossina palpalis gambiensis. The trypanosome prevalence in Glossina palpalis gambiensis was lowest in Mali (6.9%) and Guinea (2.2%). The prevalence of SGHV and Wolbachia was very low irrespective of location or tsetse species with an average of 1.7% for SGHV and 1.0% for Wolbachia. In some cases, mixed infections with different trypanosome species were detected. The highest prevalence of coinfection was Trypanosoma vivax and other Trypanosoma species (9.5%) followed by coinfection of T. congolense with other trypanosomes (7.5%). The prevalence of coinfection of T. vivax and T. congolense was (1.0%) and no mixed infection of trypanosomes, SGHV and Wolbachia was detected. CONCLUSION: The results indicated a high rate of trypanosome infection in tsetse wild populations in West African countries but lower infection rate of both Wolbachia and SGHV. Double or triple mixed trypanosome infections were found. In addition, mixed trypanosome and SGHV infections existed however no mixed infections of trypanosome and/or SGHV with Wolbachia were found.


Subject(s)
Cytomegalovirus/isolation & purification , Trypanosoma/isolation & purification , Tsetse Flies/microbiology , Tsetse Flies/parasitology , Tsetse Flies/virology , Wolbachia/isolation & purification , Africa, Western , Animals , Cytomegalovirus/pathogenicity , Geography , Ghana , Humans , Insect Vectors/microbiology , Insect Vectors/parasitology , Insect Vectors/virology , Prevalence , Spiroplasma/isolation & purification , Symbiosis
15.
PLoS Negl Trop Dis ; 12(8): e0006677, 2018 08.
Article in English | MEDLINE | ID: mdl-30125276

ABSTRACT

Burkina Faso belongs to a group of countries in which human African trypanosomiasis (HAT), caused by Trypanosoma brucei gambiense, is no longer considered to be a public health problem. Although no native cases have been detected since 1993, there is still the risk of HAT re-emergence due to significant population movements between Burkina Faso and active HAT foci in Côte d'Ivoire. Since 2014, Burkina Faso receives support from the WHO to implement a passive surveillance program. This resulted in the detection in 2015 of the first putative native HAT case since two decades. However, epidemiological entomological and molecular biology investigations have not been able to identify with certainty the origin of this infection or to confirm that it was due to T. b. gambiense. This case emphasises the need to strengthen passive surveillance of the disease for sustained elimination of HAT as a public health problem in Burkina Faso.


Subject(s)
Trypanosomiasis, African/epidemiology , Adolescent , Burkina Faso/epidemiology , Eflornithine/therapeutic use , Humans , Male , Trypanocidal Agents/therapeutic use , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/parasitology
16.
Parasit Vectors ; 11(1): 270, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29703229

ABSTRACT

BACKGROUND: Tsetse flies are the sole vectors of human and animal trypanosomosis. In Burkina Faso, a project aiming to create zones free of tsetse flies and trypanosomosis was executed from June 2006 to December 2013. After the determination of tsetse distribution in the intervention area from December 2007 to November 2008, the control campaign was launched in November 2009 and ended in December 2013. The goal was to eliminate tsetse flies from 40,000 km2 of area, through an integrated control campaign including insecticide targets, traps and cattle, sequential aerial treatment (SAT) and the mass treatment of livestock using trypanocides. The campaign involved assistance of the beneficiary communities at all the steps of the control strategy with insecticide impregnated targets. METHODS: This study was carried out to assess the impact of the control project on tsetse apparent density per trap per day (ADT). To evaluate the effectiveness of tsetse control, 201 sites were selected based on the baseline survey results carried out from December 2007 to November 2008. These sites were monitored bi-monthly from January 2010 to November 2012. At the end-of-study in 2013 a generalized entomological survey was carried out in 401 infested sites found during the longitudinal survey done before the control. Barrier and tsetse persistence areas were treated by ground spraying and evaluated. Controls were also done before and after aerial spraying. RESULTS: In the insecticide-impregnated target area, the control showed that ADT of tsetse flies declined from 10.73 (SD 13.27) to 0.43 (SD 2.51) fly/trap/day from the third month of campaign onwards (P < 0.0001) and remained low thereafter. At the end of the campaign in 2013, an 83% reduction of ADT was observed for Glossina palpalis gambiensis and a 92% reduction for G. tachinoides. Tsetse flies were captured only in 29% of the sites found infested in 2008. CONCLUSIONS: Tsetse flies could be suppressed efficiently but their elimination from the targeted area may require the use integrated methods including the Sterile Insect Technique, which is programmed through the development of the Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC Burkina) insectarium. The challenge will remain the sustainability of the achievement.


Subject(s)
Insect Control/methods , Trypanosomiasis/veterinary , Tsetse Flies/physiology , Animal Distribution , Animals , Burkina Faso , Female , Insect Vectors/drug effects , Insect Vectors/parasitology , Insect Vectors/physiology , Insecticides/pharmacology , Livestock/parasitology , Male , Trypanocidal Agents/administration & dosage , Trypanosoma/drug effects , Trypanosoma/physiology , Trypanosomiasis/parasitology , Trypanosomiasis/prevention & control , Trypanosomiasis/transmission , Tsetse Flies/drug effects , Tsetse Flies/parasitology
17.
PLoS Negl Trop Dis ; 11(7): e0005792, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28750007

ABSTRACT

BACKGROUND: Gambian sleeping sickness or HAT (human African trypanosomiasis) is a neglected tropical disease caused by Trypanosoma brucei gambiense transmitted by riverine species of tsetse. A global programme aims to eliminate the disease as a public health problem by 2020 and stop transmission by 2030. In the South of Chad, the Mandoul area is a persistent focus of Gambian sleeping sickness where around 100 HAT cases were still diagnosed and treated annually until 2013. Pre-2014, control of HAT relied solely on case detection and treatment, which lead to a gradual decrease in the number of cases of HAT due to annual screening of the population. METHODS: Because of the persistence of transmission and detection of new cases, we assessed whether the addition of vector control to case detection and treatment could further reduce transmission and consequently, reduce annual incidence of HAT in Mandoul. In particular, we investigated the impact of deploying 'tiny targets' which attract and kill tsetse. Before tsetse control commenced, a census of the human population was conducted and their settlements mapped. A pre-intervention survey of tsetse distribution and abundance was implemented in November 2013 and 2600 targets were deployed in the riverine habitats of tsetse in early 2014, 2015 and 2016. Impact on tsetse and on the incidence of sleeping sickness was assessed through nine tsetse monitoring surveys and four medical surveys of the human population in 2014 and 2015. Mathematical modelling was used to assess the relative impact of tsetse control on incidence compared to active and passive screening. FINDINGS: The census indicated that a population of 38674 inhabitants lived in the vicinity of the Mandoul focus. Within this focus in November 2013, the vector is Glossina fuscipes fuscipes and the mean catch of tsetse from traps was 0.7 flies/trap/day (range, 0-26). The catch of tsetse from 44 sentinel biconical traps declined after target deployment with only five tsetse being caught in nine surveys giving a mean catch of 0.005 tsetse/trap/day. Modelling indicates that 70.4% (95% CI: 51-95%) of the reduction in reported cases between 2013 and 2015 can be attributed to vector control with the rest due to medical intervention. Similarly tiny targets are estimated to have reduced new infections dramatically with 62.8% (95% CI: 59-66%) of the reduction due to tsetse control, and 8.5% (95% 8-9%) to enhanced passive detection. Model predictions anticipate that elimination as a public health problem could be achieved by 2018 in this focus if vector control and screening continue at the present level and, furthermore, there may have been virtually no transmission since 2015. CONCLUSION: This work shows that tiny targets reduced the numbers of tsetse in this focus in Chad, which may have interrupted transmission and the combination of tsetse control to medical detection and treatment has played a major role in reducing in HAT incidence in 2014 and 2015.


Subject(s)
Insect Control/methods , Nitriles/pharmacology , Pyrethrins/pharmacology , Trypanosomiasis, African/prevention & control , Trypanosomiasis, African/transmission , Tsetse Flies/parasitology , Animals , Censuses , Chad/epidemiology , Female , Humans , Incidence , Insect Vectors/parasitology , Male , Mass Screening , Models, Theoretical , Trypanosoma brucei gambiense/isolation & purification
18.
Parasit Vectors ; 9: 263, 2016 May 04.
Article in English | MEDLINE | ID: mdl-27146309

ABSTRACT

BACKGROUND: Research efforts to identify possible alternative control tools for malaria and African trypanosomiasis are needed. One promising approach relies on the use of traditional plant remedies with insecticidal activities. METHODS: In this study, we assessed the effect of blood treated with different doses of NeemAzal ® (NA, neem seed extract) on mosquitoes (Anopheles coluzzii) and tsetse flies (Glossina palpalis gambiensis) (i) avidity to feed on the treated blood, (ii) longevity, and (iii) behavioural responses to human and calf odours in dual-choice tests. We also gauged NeemAzal ® toxicity in mice. RESULTS: In An. coluzzii, the ingestion of NA in bloodmeals offered by membrane feeding resulted in (i) primary antifeedancy; (ii) decreased longevity; and (iii) reduced response to host odours. In G. palpalis gambiensis, NA caused (i) a knock-down effect; (ii) decreased or increased longevity depending on the dose; and (iii) reduced response to host stimuli. In both cases, NA did not affect the anthropophilic rate of activated insects. Overall, the most significant effects were observed with NA treated bloodmeals at a dose of 2000 µg/ml for mosquitoes and 50 µg/ml for tsetse flies. Although no mortality in mice was observed after 14 days of follow-up at oral doses of 3.8, 5.6, 8.4 and 12.7 g/kg, behavioural alterations were noticed at doses above 8 g/kg. CONCLUSION: This study revealed promising activity of NA on A. coluzzii and G. palpalis gambiensis but additional research is needed to assess field efficacy of neem products to be possibly integrated in vector control programmes.


Subject(s)
Anopheles/drug effects , Azadirachta/chemistry , Feeding Behavior/drug effects , Plant Extracts/pharmacology , Tsetse Flies/drug effects , Animals , Female , Insecticides/chemistry , Insecticides/pharmacology , Male , Mice , Plant Extracts/adverse effects , Plant Extracts/chemistry
20.
PLoS Negl Trop Dis ; 10(2): e0004491, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26901049

ABSTRACT

BACKGROUND: The Government of Senegal has embarked several years ago on a project that aims to eradicate Glossina palpalis gambiensis from the Niayes area. The removal of the animal trypanosomosis would allow the development more efficient livestock production systems. The project was implemented using an area-wide integrated pest management strategy including a sterile insect technique (SIT) component. The released sterile male flies originated from a colony from Burkina Faso. METHODOLOGY/PRINCIPAL FINDINGS: Monitoring the efficacy of the sterile male releases requires the discrimination between wild and sterile male G. p. gambiensis that are sampled in monitoring traps. Before being released, sterile male flies were marked with a fluorescent dye powder. The marking was however not infallible with some sterile flies only slightly marked or some wild flies contaminated with a few dye particles in the monitoring traps. Trapped flies can also be damaged due to predation by ants, making it difficult to discriminate between wild and sterile males using a fluorescence camera and / or a fluorescence microscope. We developed a molecular technique based on the determination of cytochrome oxidase haplotypes of G. p. gambiensis to discriminate between wild and sterile males. DNA was isolated from the head of flies and a portion of the 5' end of the mitochondrial gene cytochrome oxidase I was amplified to be finally sequenced. Our results indicated that all the sterile males from the Burkina Faso colony displayed the same haplotype and systematically differed from wild male flies trapped in Senegal and Burkina Faso. This allowed 100% discrimination between sterile and wild male G. p. gambiensis. CONCLUSIONS/SIGNIFICANCE: This tool might be useful for other tsetse control campaigns with a SIT component in the framework of the Pan-African Tsetse and Trypanosomosis Eradication Campaign (PATTEC) and, more generally, for other vector or insect pest control programs.


Subject(s)
Trypanosomiasis, African/transmission , Tsetse Flies/physiology , Animals , Discriminant Analysis , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Female , Insect Control , Insect Proteins/genetics , Insect Proteins/metabolism , Male , Reproduction , Tsetse Flies/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...