Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 239: 124240, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37003379

ABSTRACT

Surface-Enhanced Raman Spectroscopy (SERS) is a powerful surface-sensitive technique for molecular analysis. Its use is limited due to high cost, non-flexible rigid substrates such as silicon, alumina or glass and less reproducibility due to non-uniform surface. Recently, paper-based SERS substrates, a low-cost and highly flexible alternative, received significant attention. We report here a rapid, inexpensive method for chitosan-reduced, in-situ synthesis of gold nanoparticles (GNPs) on paper devices towards direct utilization as SERS substrates. GNPs have been prepared by reducing chloroauric acid with chitosan as a reducing and capping reagent on the cellulose-based paper surface at 100 °C, under the saturated humidity condition (100 % humidity). GNPs thus obtained were uniformly distributed on the surface and had fairly uniform particle size with a diameter of 10 ± 2 nm. Substrate coverage of resulting GNPs directly depended on the precursor's ratio, temperature and reaction time. Techniques such as TEM, SEM, and FE-SEM were utilized to determine the shape, size, and distribution of GNPs on paper substrate. SERS substrate produced by this simple, rapid, reproducible and robust method of chitosan-reduced, in situ synthesis of GNPs, showed exceptional performance and long-term stability, with a detection limit of up to 1 pM concentration of test analyte, R6G. Present paper-based SERS substrates are cost-effective, reproducible, flexible, and suitable for field applications.


Subject(s)
Chitosan , Metal Nanoparticles , Chitosan/chemistry , Gold/chemistry , Reproducibility of Results , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman/methods
2.
Anal Chim Acta ; 1044: 86-92, 2018 Dec 31.
Article in English | MEDLINE | ID: mdl-30442408

ABSTRACT

Use of paper-based devices for affordable diagnostics is gaining interest due to unique advantages such as affordability, portability, easy disposability and inherent capillarity. As capillary transportation is an integral component of paper-based devices, low sample volume with faster measurement becomes an additional advantage. We have developed a simple, paper-based microfluidic device suitable for measuring the viscosity of Newtonian fluids as well as a few non-Newtonian fluids with sample volume as little as 12-20 µL. The results could be obtained much faster than the conventional methods. A comparative analysis of the results obtained with our paper-based viscometer and with that of the conventional Ostwald viscometer shows a correlation coefficient greater than 0.99. Apart from viscosity measurement, the paper-based devices were tested for protein denaturation and polymer molecular weight determination. Our results show that the paper-based viscometer could be a potential alternative for the conventional viscometers in the viscosity range from 0.9 cP up till ∼40 cP, with added benefits in terms of time, cost and low sample volume requirement.

SELECTION OF CITATIONS
SEARCH DETAIL
...