Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Prog ; 38(4): e3262, 2022 07.
Article in English | MEDLINE | ID: mdl-35429152

ABSTRACT

Intensified perfusion processes are an integral part of continuous manufacturing for biopharmaceuticals which enable agile operations and significant reduction in cost of goods. However, they require large volumes of media to support robust cell growth and maintain high productivity, posing substantial challenges to operations, logistics, and process sustainability. This study explores a novel strategy for reprocessing and reusing permeate from perfusion cultures for mAb production. The concept was initially evaluated by recycling permeate, Protein A flow-through (ProA FT) and CEX processed ProA FT in deep-well plate mock perfusion and ambr® 250 perfusion formats. Further processing of ProA FT through a cation exchange depth filter before recycling reduced process impurities such as host cell proteins (HCPs) and DNA. However, a direct replacement of fresh media with spent media reduces nutrient depth which results in a concomitant reduction in productivity. In ambr® 250 bioreactors, recycling of ProA FT at 25%-50% replacement rates (defined as the fraction of recycled material in media) resulted in a 13%-30% reduction in cumulative productivity while maintaining product quality. To mitigate this, we used media concentrates which allowed independent modulation of media depth by replacing a portion of diluent WFI with recycled material. Results from deep-well mock perfusion studies demonstrated that comparable or higher productivities relative to control can be achieved with this approach. Taken together, our study demonstrates the feasibility of recycling permeate in perfusion cultures. Process mass intensity (PMI) calculations reveal that this approach can meaningfully improve material efficiency by reducing water consumption, thereby enhancing overall bioprocess sustainability.


Subject(s)
Biological Products , Animals , Bioreactors , Cell Proliferation , Cricetinae , Cricetulus , Perfusion , Staphylococcal Protein A
2.
J Pharm Sci ; 110(3): 1067-1076, 2021 03.
Article in English | MEDLINE | ID: mdl-33359313

ABSTRACT

Therapeutic manufacturing has become globalized in recent decades, necessitating transportation of drug substance across the world. The outcome of this expansion is significant costs for shipment and added risk of damage to the drug substance containers. There are multiple container options with various materials of construction for storage of Biologics drug substance (DS). This study evaluates a newly designed CryoVault™ container and previously characterized CelsiusPak® bag container using a well-represented scale-down model. Consideration of an appropriate storage container includes the risk assessment of the design and material of construction, which can potentially impact product quality attributes, stability and container leachables. An extensive data package, including product stability over time and temperature with respect to impact of extractables and leachables from different containers undergoing a typical one freeze/thaw cycle process was evaluated. This drove to the decision for implementation of a container into the drug substance manufacturing process.


Subject(s)
Biological Products , Pharmaceutical Preparations , Drug Packaging , Drug Storage , Freezing , Temperature
3.
J Pharm Biomed Anal ; 189: 113472, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32693202

ABSTRACT

Chinese hamster ovary (CHO) cells are the host cell of choice for manufacturing biologic drugs, like monoclonal antibody, in the biopharmaceutical industry. Retrovirus-like particles (RVLPs) are made during the manufacturing process with CHO cells and it is incumbent upon the manufacturer to perform risk assessment based on levels of RVLP in unprocessed bulk. Quantification of RVLP using electron microscopy (EM) is the standard method. However, reverse transcription based real-time PCR (RT qPCR) is an alternative method available. This method involves RNase digestion of cell culture fluid to remove free RNA, followed by extraction of total nucleic acid and digestion with DNase to remove extracted DNA molecules, and then finally reverse transcription and PCR. Here we report a method where the nucleic acids extraction step is eliminated prior to qPCR. In this method the cell-free culture supernatant sample is digested with thermolabile DNase and RNase at the same time in a 96-well PCR plate; subsequently the enzymes are heat-denatured; then RT qPCR reagents are added to the wells in the PCR plate along with standards and controls in other wells of the same plate; finally the plate is subjected to RT qPCR for analysis of RVLP RNA in the samples. This direct RT qPCR method for RVLP is sensitive to 10 particles of RVLP with good precision and accuracy and has a wide linear range of quantification. The method has been successfully tested with different production batches, shown to be consistent, and correlates well with the extraction-based method. However, the results are about 1-log higher compared to EM method. This method simplifies the RVLP quantification protocol, reduces time of analysis and leads to increased assay sensitivity and development of automated high-throughput methods. Additionally, the method can be an added tool for viral clearance studies, by testing process-intermediate samples like Protein A column and ion-exchange column eluates, for increased confidence in purification of biologics manufactured in CHO cell culture.


Subject(s)
Biological Products , Retroviridae , Animals , CHO Cells , Cricetinae , Cricetulus , Real-Time Polymerase Chain Reaction
4.
J Pharm Sci ; 106(8): 1944-1951, 2017 08.
Article in English | MEDLINE | ID: mdl-28343990

ABSTRACT

The storage of drug substance at subzero temperatures mitigates potential risks associated with liquid storage, such as degradation and shipping stress, making it the best solution for long-term storage. However, slower (generally uncontrolled) rates of freezing and thawing of drug substance in conventional large storage containers (>2L) can lead to greater cryoconcentration (exclusion of solute molecules) resulting in zones of higher protein and excipient concentrations and changes to the desired formulation pH and excipient concentration. These conditions can negatively impact product quality, thus changing the target product profile. Freeze/thaw studies can provide valuable knowledge on the molecule even when performed from an early formulation image. This study attempts to provide guidance and strategy for planning of drug substance freeze and thaw studies in early development using a scale-down model, evaluating the impact of the (1) freeze/thaw rate, (2) mode of freezing, (3) drug substance container, (4) drug substance concentration, and (5) formulation on the drug substance product quality. Data presented in this study showed no impact on drug substance product quality after undergoing the typical one freeze/thaw cycle process for the variables evaluated. These findings suggest that a qualified scale-down model is not required for early phases of process development and that existing small-scale models can be used for drug substance storage development studies. Based on our experience, a workflow is suggested with minimal experimental design to reduce the material requirement by >70% at early stages of product development to reduce constraints.


Subject(s)
Antibodies, Monoclonal/chemistry , Excipients/chemistry , Protein Aggregates , Protein Stability , Drug Compounding , Drug Storage , Freezing , Protein Unfolding , Temperature
5.
Biotechnol Prog ; 31(3): 765-74, 2015.
Article in English | MEDLINE | ID: mdl-25919945

ABSTRACT

Controlling viral contamination is an important issue in the process development of monoclonal antibodies (MAbs) produced from mammalian cell lines. Virus filtration (VF) has been demonstrated to be a robust and effective clearance step which can provide ≥4 logs of reduction via size exclusion. The minimization of VF area by increasing flux and filter loading is critical to achieving cost targets as VFs are single use and often represent up to 10% of total purification costs. The research presented in this publication describes a development strategy focused on biophysical attributes of product streams that are directly applicable to VF process performance. This article summarizes a case study where biophysical tools (high-pressure size exclusion chromatography, dynamic light scattering, and absolute size exclusion chromatography) were applied to a specific MAb program to illustrate how changes in feed composition (pH, sodium chloride concentration, and buffer salt type) can change biophysical properties which correlate with VF performance. The approach was subsequently refined and expanded over the course of development of three MAbs where performance metrics (i.e., loading and flux) were evaluated for two specific virus filters (Viresolve Pro and Planova 20N) during both unspiked control runs and virus clearance experiments. The analyses of feed attributes can be applied to a decision tree to guide the recommendation of a VF filter and operating conditions for use in future MAb program development. The understanding of the biophysical properties of the feed can be correlated to virus filter performance to significantly reduce the mass of product, time, and costs associated with virus filter step development.


Subject(s)
Antibodies, Monoclonal/chemistry , Drug Contamination , Viruses/isolation & purification , Antibodies, Monoclonal/isolation & purification , Biophysics , Buffers , Filtration , Hydrogen-Ion Concentration , Molecular Weight
6.
J Pharm Sci ; 101(12): 4414-8, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22987365

ABSTRACT

Erythropoietin (EPO) is an important molecule in the erythropoiesis and various forms of EPO have been marketed in managing anemia in humans. Long acting EPOs for less frequent dosing have been generated either by increasing the number of glycosylation sites of the EPO molecule or by linking it to a polyethylene glycol (PEG). We have generated recombinant human EPO (rhEPO) using glycoengineered Pichia pastoris strains and evaluated the pharmacokinetics (PK) in rats of this molecule linked to a 40 kDa PEG (PEGylated rhEPO), in relation to its glycosylation patterns. As expected, the PEGylated rhEPO exhibited a significant improvement in half-life of serum when compared with the non-PEGylated version. Interestingly, the PK properties of the PEGylated rhEPO molecule were also significantly influenced by the glycosylation profile. Specifically, PEGylated rhEPO with a significantly higher sialic acid content in the biantennary structure (high A2) exhibited lower systemic clearance and higher systemic exposure than those with a lower sialic acid content (low A2) following either intravenous or subcutaneous administrations. These results suggest that A2 content may be one of the important criteria for release in manufacturing PEGylated rhEPO to ensure consistent PK.


Subject(s)
Erythropoietin/blood , Erythropoietin/chemistry , Polyethylene Glycols/chemistry , Sialic Acids/chemistry , Animals , Carbohydrate Sequence , Erythropoietin/genetics , Glycosylation , Half-Life , Humans , Male , Molecular Sequence Data , Pichia/genetics , Protein Engineering , Rats , Rats, Sprague-Dawley , Recombinant Proteins/blood , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...