Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 10(11): 5182-5190, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29492500

ABSTRACT

In this work we present the study of the ultra-fast dynamics of the nonlinear optical response of a honeycomb array of silver triangular nanoprisms, performed using a femtosecond pulsed laser tuned with the dipolar surface plasmon resonance of the nanoarray. Nonlinear absorption and refraction, and their time-dependence, were explored using the z-scan and time-resolved excite-probe techniques. Nonlinear absorption is shown to change sign with the input irradiance and the behavior was explained on the basis of a three-level model. The response time was determined to be in the picosecond regime. A technique based on a variable frequency chopper was also used in order to discriminate the thermal and electronic contributions to the nonlinearity, which were found to have opposite signs. All these findings propel the investigated nanoprism arrays as good candidates for applications in advanced ultra-fast nonlinear nanophotonic devices.

2.
Sci Rep ; 7(1): 5307, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28706203

ABSTRACT

Ordered metallic nanoprism arrays have been proposed as novel and versatile systems for the observation of nonlinear effects such as nonlinear absorption. The study of the effect of the local field reinforcement on the fast optical third order nonlinear response around the Surface Plasmon Resonance is of great interest for many plasmonic applications. In this work, silver nanoprism arrays have been synthesized by the nanosphere lithography method. A low repetition rate tunable picosecond laser source was used to study the irradiance and wavelength dependence of the nonlinear absorption properties around the dipolar and quadrupolar resonances of the nanoarray with the use of the z-scan technique. The irradiance dependence of the on-resonance nonlinearity was studied, and a spectral region where nonlinear absorption is negligible was identified. This is important for the possible application of these materials in optical information processing devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...