Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Genet Med ; 25(11): 100938, 2023 11.
Article in English | MEDLINE | ID: mdl-37454282

ABSTRACT

PURPOSE: Biallelic variants in TARS2, encoding the mitochondrial threonyl-tRNA-synthetase, have been reported in a small group of individuals displaying a neurodevelopmental phenotype but with limited neuroradiological data and insufficient evidence for causality of the variants. METHODS: Exome or genome sequencing was carried out in 15 families. Clinical and neuroradiological evaluation was performed for all affected individuals, including review of 10 previously reported individuals. The pathogenicity of TARS2 variants was evaluated using in vitro assays and a zebrafish model. RESULTS: We report 18 new individuals harboring biallelic TARS2 variants. Phenotypically, these individuals show developmental delay/intellectual disability, regression, cerebellar and cerebral atrophy, basal ganglia signal alterations, hypotonia, cerebellar signs, and increased blood lactate. In vitro studies showed that variants within the TARS2301-381 region had decreased binding to Rag GTPases, likely impairing mTORC1 activity. The zebrafish model recapitulated key features of the human phenotype and unraveled dysregulation of downstream targets of mTORC1 signaling. Functional testing of the variants confirmed the pathogenicity in a zebrafish model. CONCLUSION: We define the clinico-radiological spectrum of TARS2-related mitochondrial disease, unveil the likely involvement of the mTORC1 signaling pathway as a distinct molecular mechanism, and establish a TARS2 zebrafish model as an important tool to study variant pathogenicity.


Subject(s)
RNA, Transfer , Zebrafish , Animals , Humans , Mutation , Zebrafish/genetics , Mechanistic Target of Rapamycin Complex 1 , Ligases , Phenotype
2.
Hum Mol Genet ; 31(4): 523-534, 2022 02 21.
Article in English | MEDLINE | ID: mdl-34508595

ABSTRACT

TARS2 encodes human mitochondrial threonyl tRNA-synthetase that is responsible for generating mitochondrial Thr-tRNAThr and clearing mischarged Ser-tRNAThr during mitochondrial translation. Pathogenic variants in TARS2 have hitherto been reported in a pair of siblings and an unrelated patient with an early onset mitochondrial encephalomyopathy and a combined respiratory chain enzyme deficiency in muscle. We here report five additional unrelated patients with TARS2-related mitochondrial diseases, expanding the clinical phenotype to also include epilepsy, dystonia, hyperhidrosis and severe hearing impairment. In addition, we document seven novel TARS2 variants-one nonsense variant and six missense variants-that we demonstrate are pathogenic and causal of the disease presentation based on population frequency, homology modeling and functional studies that show the effects of the pathogenic variants on TARS2 stability and/or function.


Subject(s)
Mitochondrial Diseases , Mitochondrial Encephalomyopathies , Threonine-tRNA Ligase , Humans , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Mitochondrial Encephalomyopathies/genetics , Mutation , Phenotype , RNA, Transfer, Thr/genetics , Threonine-tRNA Ligase/genetics
3.
Nucleic Acids Res ; 49(17): 9686-9695, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34428295

ABSTRACT

Diagnosing mitochondrial disorders remains challenging. This is partly because the clinical phenotypes of patients overlap with those of other sporadic and inherited disorders. Although the widespread availability of genetic testing has increased the rate of diagnosis, the combination of phenotypic and genetic heterogeneity still makes it difficult to reach a timely molecular diagnosis with confidence. An objective, systematic method for describing the phenotypic spectra for each variant provides a potential solution to this problem. We curated the clinical phenotypes of 6688 published individuals with 89 pathogenic mitochondrial DNA (mtDNA) mutations, collating 26 348 human phenotype ontology (HPO) terms to establish the MitoPhen database. This enabled a hypothesis-free definition of mtDNA clinical syndromes, an overview of heteroplasmy-phenotype relationships, the identification of under-recognized phenotypes, and provides a publicly available reference dataset for objective clinical comparison with new patients using the HPO. Studying 77 patients with independently confirmed positive mtDNA diagnoses and 1083 confirmed rare disease cases with a non-mitochondrial nuclear genetic diagnosis, we show that HPO-based phenotype similarity scores can distinguish these two classes of rare disease patients with a false discovery rate <10% at a sensitivity of 80%. Enriching the MitoPhen database with more patients will improve predictions for increasingly rare variants.


Subject(s)
DNA, Mitochondrial/chemistry , Databases, Factual , Mitochondrial Diseases/genetics , Biological Ontologies , Heteroplasmy , Humans , Mitochondrial Diseases/diagnosis , Mutation , Phenotype
4.
Sci Rep ; 11(1): 2515, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33510257

ABSTRACT

Expanded CGG-repeats have been linked to neurodevelopmental and neurodegenerative disorders, including the fragile X syndrome and fragile X-associated tremor/ataxia syndrome (FXTAS). We hypothesized that as of yet uncharacterised CGG-repeat expansions within the genome contribute to human disease. To catalogue the CGG-repeats, 544 human whole genomes were analyzed. In total, 6101 unique CGG-repeats were detected of which more than 93% were highly variable in repeat length. Repeats with a median size of 12 repeat units or more were always polymorphic but shorter repeats were often polymorphic, suggesting a potential intergenerational instability of the CGG region even for repeats units with a median length of four or less. 410 of the CGG repeats were associated with known neurodevelopmental disease genes or with strong candidate genes. Based on their frequency and genomic location, CGG repeats may thus be a currently overlooked cause of human disease.


Subject(s)
Genetic Predisposition to Disease , Genome, Human , Nervous System Diseases/genetics , Polymorphism, Genetic , Trinucleotide Repeat Expansion , Trinucleotide Repeats , Alleles , Computational Biology/methods , Genetic Association Studies/methods , Genomic Instability , Humans , Microsatellite Instability , Molecular Sequence Annotation , Nervous System Diseases/diagnosis , Neurodevelopmental Disorders/genetics
6.
Genet Med ; 22(2): 353-361, 2020 02.
Article in English | MEDLINE | ID: mdl-31506646

ABSTRACT

PURPOSE: Guidelines recommend that genetic reports should be clear to nonspecialists, including patients. We investigated the feasibility of creating reports for cystic fibrosis carrier testing through a rapid user-centered design process that built on a previously developed generic template. We evaluated the new reports' communication efficacy and effects on comprehension against comparable reports used in current clinical practice. METHODS: Thirty participants took part in three rounds of interviews. Usability problems were identified and rectified in each round. One hundred ninety-three participants took part in an evaluation of the resulting reports measuring subjective comprehension, risk probability comprehension, perceived communication efficacy, and other factors, as compared with standard reports. RESULTS: Participants viewing the user-centered reports rated them as clearer, easier to understand, and more effective at communicating key information than standard reports. Both groups ended up with equivalent knowledge of risk probabilities, although we observed differences in how those probabilities were perceived. CONCLUSION: Our findings demonstrate that by starting with a patient-friendly generic report template and modifying it for specific scenarios with a rapid user-centered design process, reports can be produced that are more effective at communicating key information. The resulting reports are now being implemented into clinical care.


Subject(s)
Genetics/standards , Research Report/standards , Surveys and Questionnaires/standards , Case-Control Studies , Communication , Comprehension , Humans
7.
Genet Med ; 22(1): 240-241, 2020 01.
Article in English | MEDLINE | ID: mdl-31548640

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Fetal Pediatr Pathol ; 39(6): 539-543, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31608750

ABSTRACT

Background: ATR-X syndrome is an X-linked clinical condition usually associated with profound intellectual disability, facial dysmorphism and alpha-thalassemia. The syndrome is clinically heterogeneous with a broad phenotypic spectrum. Although, alpha-thalassaemia is commonly present, it may not manifest in some patients.Case report: A novel missence mutation (NM_000489: ATRX; c.6130C > T; p.Leu2044Phe) was detected in the ATR-X gene in two male siblings with severe intellectual disability, dysmorphic facial appearance and skeletal anomalies. Severe kyphoscoliosis was the main finding. Hematologic findings, one of the well-known clinical entities, were not present.Conclusion: The missense mutation we have described in our patients has not been previously reported. This finding enriches mutation spectrum of ATRX (OMIM #300032) gene. This missense mutation, which is associated with ID and kyphoscoliosis and without alpha-thalassemia, contributes to genotype-phenotype correlation of the ATR-X spectrum. This case report provides further evidence that reverse genetics is a useful approach in diagnostic process of syndromic patients in adulthood.


Subject(s)
Intellectual Disability , alpha-Thalassemia , Adult , DNA Helicases/genetics , Humans , Intellectual Disability/genetics , Male , Mental Retardation, X-Linked , Mutation , Nuclear Proteins/genetics , Phenotype , X-linked Nuclear Protein/genetics , alpha-Thalassemia/complications , alpha-Thalassemia/genetics
9.
Mol Genet Genomic Med ; 7(4): e00569, 2019 04.
Article in English | MEDLINE | ID: mdl-30729724

ABSTRACT

BACKGROUND: Mutations in mediator of RNA polymerase II transcription subunit 12 homolog (MED12, OMIM 300188) cause X-linked intellectual disability (XLID) disorders including FG, Lujan, and Ohdo syndromes. The Gli3-dependent Sonic Hedgehog (SHH) signaling pathway has been implicated in the original FG syndrome and Lujan syndrome. How are SHH-signaling defects related to the complex clinical phenotype of MED12-associated XLID syndromes are not fully understood. METHODS: Quantitative RT-PCR was used to study expression levels of three SHH-signaling genes in lymophoblast cell lines carrying four MED12 mutations from four unrelated XLID families. Genotype and phenotype correlation studies were performed on these mutations. RESULTS: Three newly identified and one novel MED12 mutations in six affected males from four unrelated XLID families were studied. Three mutations (c.2692A>G; p.N898D, c.3640C>T; p.R1214C, and c.3884G>A; p.R1295H) are located in the LS domain and one (c.617G>A; p.R206Q) is in the L domain of MED12. These mutations involve highly conserved amino acid residues and segregate with ID and related congenital malformations in respective probands families. Patients with the LS-domain mutations share many features of FG syndrome and some features of Lujan syndrome. The patient with the L-domain mutation presented with ID and predominant neuropsychiatric features but little dysmorphic features of either FG or Lujan syndrome. Transcript levels of three Gli3-dependent SHH-signaling genes, CREB5, BMP4, and NEUROG2, were determined by quantitative RT-PCR and found to be significantly elevated in lymphoblasts from patients with three mutations in the MED12-LS domain. CONCLUSIONS: These results support a critical role of MED12 in regulating Gli3-dependent SHH signaling and in developing ID and related congenital malformations in XLID syndromes. Differences in the expression profile of SHH-signaling genes potentially contribute to variability in clinical phenotypes in patients with MED12-related XLID disorders.


Subject(s)
Craniofacial Abnormalities/genetics , Mediator Complex/genetics , Mental Retardation, X-Linked/genetics , Mutation, Missense , Adult , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 4/metabolism , Cells, Cultured , Craniofacial Abnormalities/pathology , Cyclic AMP Response Element-Binding Protein A/genetics , Cyclic AMP Response Element-Binding Protein A/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Male , Mediator Complex/chemistry , Mediator Complex/metabolism , Mental Retardation, X-Linked/pathology , Middle Aged , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Pedigree , Protein Domains , Signal Transduction
10.
Ophthalmic Genet ; 39(6): 763-770, 2018 12.
Article in English | MEDLINE | ID: mdl-30451557

ABSTRACT

BACKGROUND: Age-related macular degeneration (AMD) is a common sight threatening condition. However, there are a number of monogenic macular dystrophies that are clinically similar to AMD, which can potentially provide pathogenetic insights. METHODS: Three siblings from a non-consanguineous Greek-Cypriot family reported central visual disturbance and nyctalopia. The patients had full ophthalmic examinations and color fundus photography, spectral-domain ocular coherence tomography and scanning laser ophthalmoscopy. Targeted polymerase chain reaction (PCR) was performed as a first step to attempt to identify suspected mutations in C1QTNF5 and TIMP3 followed by whole genome sequencing. RESULTS: The three patients were noted to have symptoms of nyctalopia, early paracentral visual field loss and, in older patients, central vision loss. Imaging identified pseudodrusen, retinal atrophy and RPE-Bruch's membrane separation. Whole genome sequencing of the proband revealed two novel heterozygous variants in C1QTNF5, c.556C>T, and c.569C>G. The mutation segregated with disease in this family, occurred in cis, and resulted in missense amino acid changes P186S and S190W in C1QTNF5. In silico modeling of the variants revealed that the S190W mutations was likely to have the greatest pathologic effect and that the combination of the mutations was likely to have an additive effect. CONCLUSIONS: The novel mutations in C1QTNF5 identified here expand the genotypic spectrum of mutations causing late-onset retinal dystrophy.


Subject(s)
Collagen/genetics , Macular Degeneration/genetics , Mutation, Missense , Whole Genome Sequencing , Aged , DNA Mutational Analysis , Electroretinography , Female , Fluorescein Angiography , Genes, Dominant , Humans , Macular Degeneration/diagnosis , Male , Middle Aged , Pedigree , Polymerase Chain Reaction , Tissue Inhibitor of Metalloproteinase-3/genetics , Tomography, Optical Coherence , Visual Acuity
11.
Eur J Hum Genet ; 26(5): 687-694, 2018 05.
Article in English | MEDLINE | ID: mdl-29391521

ABSTRACT

To date, over 150 disease-associated variants in CRB1 have been described, resulting in a range of retinal disease phenotypes including Leber congenital amaurosis and retinitis pigmentosa. Despite this, no genotype-phenotype correlations are currently recognised. We performed a retrospective review of electronic patient records to identify patients with macular dystrophy due to bi-allelic variants in CRB1. In total, seven unrelated individuals were identified. The median age at presentation was 21 years, with a median acuity of 0.55 decimalised Snellen units (IQR = 0.43). The follow-up period ranged from 0 to 19 years (median = 2.0 years), with a median final decimalised Snellen acuity of 0.65 (IQR = 0.70). Fundoscopy revealed only a subtly altered foveal reflex, which evolved into a bull's-eye pattern of outer retinal atrophy. Optical coherence tomography identified structural changes-intraretinal cysts in the early stages of disease, and later outer retinal atrophy. Genetic testing revealed that one rare allele (c.498_506del, p.(Ile167_Gly169del)) was present in all patients, with one patient being homozygous for the variant and six being heterozygous. In trans with this, one variant recurred twice (p.(Cys896Ter)), while the four remaining alleles were each observed once (p.(Pro1381Thr), p.(Ser478ProfsTer24), p.(Cys195Phe) and p.(Arg764Cys)). These findings show that the rare CRB1 variant, c.498_506del, is strongly associated with localised retinal dysfunction. The clinical findings are much milder than those observed with bi-allelic, loss-of-function variants in CRB1, suggesting this in-frame deletion acts as a hypomorphic allele. This is the most prevalent disease-causing CRB1 variant identified in the non-Asian population to date.


Subject(s)
Eye Proteins/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Macular Degeneration/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Adolescent , Adult , Alleles , Child , Child, Preschool , Electronic Health Records , Female , Genetic Testing , Humans , Infant , Infant, Newborn , Macular Degeneration/physiopathology , Male , Retinal Photoreceptor Cell Outer Segment/pathology , Young Adult
12.
J Med Genet ; 55(2): 114-121, 2018 02.
Article in English | MEDLINE | ID: mdl-29074561

ABSTRACT

BACKGROUND: Diagnostic use of gene panel next-generation sequencing (NGS) techniques is commonplace for individuals with inherited retinal dystrophies (IRDs), a highly genetically heterogeneous group of disorders. However, these techniques have often failed to capture the complete spectrum of genomic variation causing IRD, including CNVs. This study assessed the applicability of introducing CNV surveillance into first-tier diagnostic gene panel NGS services for IRD. METHODS: Three read-depth algorithms were applied to gene panel NGS data sets for 550 referred individuals, and informatics strategies used for quality assurance and CNV filtering. CNV events were confirmed and reported to referring clinicians through an accredited diagnostic laboratory. RESULTS: We confirmed the presence of 33 deletions and 11 duplications, determining these findings to contribute to the confirmed or provisional molecular diagnosis of IRD for 25 individuals. We show that at least 7% of individuals referred for diagnostic testing for IRD have a CNV within genes relevant to their clinical diagnosis, and determined a positive predictive value of 79% for the employed CNV filtering techniques. CONCLUSION: Incorporation of CNV analysis increases diagnostic yield of gene panel NGS diagnostic tests for IRD, increases clarity in diagnostic reporting and expands the spectrum of known disease-causing mutations.


Subject(s)
DNA Copy Number Variations , High-Throughput Nucleotide Sequencing/methods , Retinal Dystrophies/genetics , Adaptor Proteins, Signal Transducing/genetics , Algorithms , Cytoskeletal Proteins , Gene Duplication , Gene Frequency , Genetic Predisposition to Disease , Humans , Membrane Proteins/genetics , Ribonucleoproteins, Small Nuclear/genetics , Workflow
13.
J Med Genet ; 53(12): 820-827, 2016 12.
Article in English | MEDLINE | ID: mdl-27439707

ABSTRACT

BACKGROUND: Heterozygous copy number variants (CNVs) or sequence variants in the contactin-associated protein 2 gene CNTNAP2 have been discussed as risk factors for a wide spectrum of neurodevelopmental and neuropsychiatric disorders. Bi-allelic aberrations in this gene are causative for an autosomal-recessive disorder with epilepsy, severe intellectual disability (ID) and cortical dysplasia (CDFES). As the number of reported individuals is still limited, we aimed at a further characterisation of the full mutational and clinical spectrum. METHODS: Targeted sequencing, chromosomal microarray analysis or multigene panel sequencing was performed in individuals with severe ID and epilepsy. RESULTS: We identified homozygous mutations, compound heterozygous CNVs or CNVs and mutations in CNTNAP2 in eight individuals from six unrelated families. All aberrations were inherited from healthy, heterozygous parents and are predicted to be deleterious for protein function. Epilepsy occurred in all affected individuals with onset in the first 3.5 years of life. Further common aspects were ID (severe in 6/8), regression of speech development (5/8) and behavioural anomalies (7/8). Interestingly, cognitive impairment in one of two affected brothers was, in comparison, relatively mild with good speech and simple writing abilities. Cortical dysplasia that was previously reported in CDFES was not present in MRIs of six individuals and only suspected in one. CONCLUSIONS: By identifying novel homozygous or compound heterozygous, deleterious CNVs and mutations in eight individuals from six unrelated families with moderate-to-severe ID, early onset epilepsy and behavioural anomalies, we considerably broaden the mutational and clinical spectrum associated with bi-allelic aberrations in CNTNAP2.


Subject(s)
DNA Copy Number Variations , Epilepsy/genetics , Intellectual Disability/genetics , Membrane Proteins/genetics , Mutation , Nerve Tissue Proteins/genetics , Adolescent , Adult , Alleles , Child , Child, Preschool , Craniofacial Abnormalities , DNA Mutational Analysis , Epilepsies, Partial/genetics , Epilepsies, Partial/metabolism , Epilepsy/diagnosis , Female , Genetic Predisposition to Disease , Humans , Infant , Intellectual Disability/diagnosis , Male , Malformations of Cortical Development/genetics , Malformations of Cortical Development/metabolism , Middle Aged , Pedigree , Phenotype , Syndrome
14.
Mov Disord ; 31(7): 1033-40, 2016 07.
Article in English | MEDLINE | ID: mdl-27061943

ABSTRACT

BACKGROUND: Adenylyl cyclase 5 (ADCY5) mutations is associated with heterogenous syndromes: familial dyskinesia and facial myokymia; paroxysmal chorea and dystonia; autosomal-dominant chorea and dystonia; and benign hereditary chorea. We provide detailed clinical data on 7 patients from six new kindreds with mutations in the ADCY5 gene, in order to expand and define the phenotypic spectrum of ADCY5 mutations. METHODS: In 5 of the 7 patients, followed over a period of 9 to 32 years, ADCY5 was sequenced by Sanger sequencing. The other 2 unrelated patients participated in studies for undiagnosed pediatric hyperkinetic movement disorders and underwent whole-exome sequencing. RESULTS: Five patients had the previously reported p.R418W ADCY5 mutation; we also identified two novel mutations at p.R418G and p.R418Q. All patients presented with motor milestone delay, infantile-onset action-induced generalized choreoathetosis, dystonia, or myoclonus, with episodic exacerbations during drowsiness being a characteristic feature. Axial hypotonia, impaired upward saccades, and intellectual disability were variable features. The p.R418G and p.R418Q mutation patients had a milder phenotype. Six of seven patients had mild functional gain with clonazepam or clobazam. One patient had bilateral globus pallidal DBS at the age of 33 with marked reduction in dyskinesia, which resulted in mild functional improvement. CONCLUSION: We further delineate the clinical features of ADCY5 gene mutations and illustrate its wide phenotypic expression. We describe mild improvement after treatment with clonazepam, clobazam, and bilateral pallidal DBS. ADCY5-associated dyskinesia may be under-recognized, and its diagnosis has important prognostic, genetic, and therapeutic implications. © 2016 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Adenylyl Cyclases/genetics , Movement Disorders/genetics , Movement Disorders/physiopathology , Aftercare , Child, Preschool , Female , Humans , Infant , Male , Pedigree
15.
J Hum Genet ; 61(2): 95-101, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26490184

ABSTRACT

Methyl-CpG-binding protein 2 (MeCP2) is a nuclear protein highly expressed in neurons that is involved in transcriptional modulation and chromatin remodeling. Mutations in MECP2 in females are associated with Rett syndrome, a neurological disorder characterized by a normal neonatal period, followed by the arrest of development and regression of acquired skills. Although it was initially thought that MECP2 pathogenic mutations in males were not compatible with life, starting from 1999 about 60 male patients have been identified and their phenotype varies from severe neonatal encephalopathy to mild intellectual disability. Targeted next-generation sequencing of a panel of intellectual disability related genes was performed on two unrelated male patients, and two missense variants in MECP2 were identified (p.Gly185Val and p.Arg167Trp). These variants lie outside the canonical methyl-CpG-binding domain and transcription repression domain domains, where the pathogenicity of missense variants is more difficult to establish. In both families, variants were found in all affected siblings and were inherited from the asymptomatic mother, showing skewed X-chromosome inactivation. We report here the first missense variant located in AT-hook domain 1 and we underline the importance of MECP2 substitutions outside the canonical MeCP2 domains in X-linked intellectual disability.


Subject(s)
Genetic Diseases, X-Linked/genetics , Intellectual Disability/genetics , Methyl-CpG-Binding Protein 2/genetics , Mutation, Missense , Adult , Child , Child, Preschool , Female , Genetic Diseases, X-Linked/diagnosis , Humans , Intellectual Disability/diagnosis , Male , Phenotype , Protein Domains/genetics
16.
J Med Genet ; 52(10): 699-705, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26275417

ABSTRACT

BACKGROUND: Neurofibromatosis 2 (NF2) is an autosomal-dominant tumour predisposition syndrome characterised by bilateral vestibular schwannomas, considerable morbidity and reduced life expectancy. Although genotype-phenotype correlations are well established in NF2, little is known about effects of mutation type or location within the gene on mortality. Improvements in NF2 diagnosis and management have occurred, but their effect on patient survival is unknown. METHODS: We evaluated clinical and molecular predictors of mortality in 1192 patients (771 with known causal mutations) identified through the UK National NF2 Registry. Kaplan-Meier survival and Cox regression analyses were used to evaluate predictors of mortality, with jackknife adjustment of parameter SEs to account for the strong intrafamilial phenotypic correlations that occur in NF2. RESULTS: The study included 241 deaths during 10 995 patient-years of follow-up since diagnosis. Early age at diagnosis and the presence of intracranial meningiomas were associated with increased mortality, and having a mosaic, rather than non-mosaic, NF2 mutation was associated with reduced mortality. Patients with splice-site or missense mutations had lower mortality than patients with truncating mutations (OR 0.459, 95% CI 0.213 to 0.990, and OR 0.196, 95% CI 0.213 to 0.990, respectively). Patients with splice-site mutations in exons 6-15 had lower mortality than patients with splice-site mutations in exons 1-5 (OR 0.333, 95% CI 0.129 to 0.858). The mortality of patients with NF2 diagnosed in more recent decades was lower than that of patients diagnosed earlier. CONCLUSIONS: Continuing advances in molecular diagnosis, imaging and treatment of NF2-associated tumours offer hope for even better survival in the future.


Subject(s)
Genes, Neurofibromatosis 2 , Mutation , Neurofibromatosis 2/genetics , Neurofibromatosis 2/mortality , Adolescent , Adult , Child , Child, Preschool , Female , Genetic Association Studies , Humans , Infant , Kaplan-Meier Estimate , Male , Neurofibromatosis 2/diagnosis , United Kingdom
17.
Eur J Hum Genet ; 22(9): 1100-4, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24424120

ABSTRACT

Recent advances in sequencing technology allow data on the human genome to be generated more quickly and in greater detail than ever before. Such detail includes findings that may be of significance to the health of the research participant involved. Although research studies generally do not feed back information on clinically significant findings (CSFs) to participants, this stance is increasingly being questioned. There may be difficulties and risks in feeding clinically significant information back to research participants, however, the UK10K consortium sought to address these by creating a detailed management pathway. This was not intended to create any obligation upon the researchers to feed back any CSFs they discovered. Instead, it provides a mechanism to ensure that any such findings can be passed on to the participant where appropriate. This paper describes this mechanism and the specific criteria, which must be fulfilled in order for a finding and participant to qualify for feedback. This mechanism could be used by future research consortia, and may also assist in the development of sound principles for dealing with CSFs.


Subject(s)
Genetics, Medical/organization & administration , Incidental Findings , Information Dissemination , Sequence Analysis, DNA/ethics , Biomedical Research/organization & administration , Genetics, Medical/methods , Information Management/organization & administration , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...