Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 101(11): 102142, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36167019

ABSTRACT

Two divergently selected broiler lines were created by selection for low (pHu-) or high (pHu+) Pectoralis major ultimate pH (pHu) in order to better understand the molecular mechanisms underlying meat quality traits in broilers and are also unique genetic resources reflecting low and high glycogen levels in chicken muscle. The present study aimed to reveal the correlated phenotypical changes of egg quality traits in broiler breeders from the 2 divergent lines at the 14th generation. Birds were reared on littered floor system until 18 wk of age and in individual cages up to 42 wk. Individual egg production was recorded daily from age at first egg to 42 wk. External (egg weight: EW and shape index: SI), internal (albumen height: AH, Haugh unit: HU, yolk index: YI, and yolk color: YC), and shell (shell percentage: ESP, thickness: EST and strength: ESS) characteristics of eggs in pHu- and pHu+ lines were measured in all eggs for 4 consecutive days at 26, 27, 28, 30, 31, 32, 41, and 42 wk of age. The pHu- line had significantly higher egg percentage than pHu+ (55.9 and 49.1%, respectively). The EW in pHu- line (57.2 g) was significantly lower than in pHu+ (59.0 g) and increased with age in both lines. The mean ESP, EST and ESS were lower in the pHu+ eggs compared to the pHu- line. ESP and EST decreased mainly from 26 to 27 wk of age and they had a stable trend with advancing age in the remaining weeks. AH and YI were lower in pHu- line eggs than in pHu+. YC was more intense and HU higher in pHu+ eggs than pHu- in pre-peak and peak laying period. In conclusion, these results showed that a divergent selection for muscle energy metabolism has led to correlated responses on internal and external egg quality traits and suggest that the production of good-quality eggs may be impaired in broiler breeders with low energy reserves.


Subject(s)
Chickens , Pectoralis Muscles , Animals , Chickens/genetics , Ovum , Meat/analysis , Hydrogen-Ion Concentration , Eggs
2.
Sci Rep ; 12(1): 5533, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35365762

ABSTRACT

The pHu+ and pHu- lines, which were selected based on the ultimate pH (pHu) of the breast muscle, represent a unique model to study the genetic and physiological controls of muscle energy store in relation with meat quality in chicken. Indeed, pHu+ and pHu- chicks show differences in protein and energy metabolism soon after hatching, associated with a different ability to use energy sources in the muscle. The present study aimed to assess the extent to which the nutritional environment of the embryo might contribute to the metabolic differences observed between the two lines at hatching. Just before incubation (E0), the egg yolk of pHu+ exhibited a higher lipid percentage compared to the pHu- line (32.9% vs. 27.7%). Although 1H-NMR spectroscopy showed clear changes in egg yolk composition between E0 and E10, there was no line effect. In contrast, 1H-NMR analysis performed on amniotic fluid at embryonic day 10 (E10) clearly discriminated the two lines. The amniotic fluid of pHu+ was richer in leucine, isoleucine, 2-oxoisocaproate, citrate and glucose, while choline and inosine were more abundant in the pHu- line. Our results highlight quantitative and qualitative differences in metabolites and nutrients potentially available to developing embryos, which could contribute to metabolic and developmental differences observed after hatching between the pHu+ and pHu- lines.


Subject(s)
Chickens , Zygote , Animals , Chickens/genetics , Hydrogen-Ion Concentration , Meat/analysis , Muscle, Skeletal/metabolism , Nutrients
3.
Genomics ; 112(2): 1660-1673, 2020 03.
Article in English | MEDLINE | ID: mdl-31669705

ABSTRACT

Efforts to elucidate the causes of biological differences between wild fowls and their domesticated relatives, the chicken, have to date mainly focused on the identification of single nucleotide mutations. Other types of genomic variations have however been demonstrated to be important in avian evolution and associated to variations in phenotype. They include several types of sequences duplicated in tandem that can vary in their repetition number. Here we report on genome size differences between the red jungle fowl and several domestic chicken breeds and selected lines. Sequences duplicated in tandem such as rDNA, telomere repeats, satellite DNA and segmental duplications were found to have been significantly re-shaped during domestication and subsequently by human-mediated selection. We discuss the extent to which changes in genome organization that occurred during domestication agree with the hypothesis that domesticated animal genomes have been shaped by evolutionary forces aiming to adapt them to anthropized environments.


Subject(s)
Breeding , Chickens/genetics , Domestication , Genome Size , Polymorphism, Genetic , Animals , Centromere/genetics , Gene Duplication , RNA, Ribosomal/genetics , Tandem Repeat Sequences , Telomere/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...