Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(7): e29091, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38596139

ABSTRACT

Carbon electrode-based perovskite solar cells (c-PSCs) without a hole transport layer (HTL) have obtained a significant interest owing to their cost-effective, stable, and simplified structure. However, their application is limited by low efficiency and the prevalence of high-temperature processed electron transport layer (ETL), e.g. TiO2, which also has poor optoelectronic properties, including low conductivity and mobility. In this study, a series of organic materials, namely PCBM ((Park et al., 2023; Park et al., 2023) [6,6]-phenyl-C61-butyric acid methyl ester, C72H14O2), Alq3 (Al(C9H6NO)3), BCP (2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline, C26H20N2), C60, ICBA (indene-C60 bisadduct, C78H16) and PEIE (poly (ethylenimine) ethoxylated, (C37H24O6N2)n) have been numerically analyzed in SCAPS-1D solar simulator to explore alternative potential ETL materials for HTL-free c-PSCs. The presented device has FTO/ETL/CH3NH3PbI3/carbon structure, and its performance is optimized based on significant design parameters. The highest achieved PCEs for PCBM, Alq3, BCP, C60, ICBA, and PEIE-based devices are 22.85%, 19.08%, 20.99%, 25.51%, 23.91%, and 22.53%, respectively. These PCEs are obtained for optimum absorber thickness for each case, with an acceptor concentration of 1.0 × 1017 cm-3 and defect density of 2.5 × 1013 cm-3. The C60-based cell has been found to outperform with device parameters as Voc of 1.29 V, Jsc of 23.76 mA/cm2, and FF of 82.67%. As the design lacks stability when only organic materials are employed, each of the presented devices have been analyzed by applying BiI3, LiF, and ZnO as protective layers with the performances not compromised. We believe that our obtained results will be of great interest in developing stable and efficient HTL-free c-PSCs.

2.
Heliyon ; 9(2): e13477, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36814632

ABSTRACT

Silicon/perovskite tandem devices are believed to be a favorite contender for improving cell performance over the theoretical maximum value of single-junction photovoltaic (PV) cells. The present study evaluates the design and optimization of four-terminal (4-T) mechanically stacked and optically coupled configurations using SCAPS (solar cell capacitance simulator). Low-cost, stable, and easily processed semitransparent carbon electrode-based perovskite solar cells (c-PSCs) without hole transport material (HTM) and highly efficient crystalline silicon (c-Si) PV cells were utilized as top and bottom cells, respectively. The wide bandgap multi-cation perovskite C s x ( F A 0.4 M A 0.6 ) 1 - x P b I 2.8 B r 0.2 and a low bandgap c-Si were employed as light-harvesting layers in the top and bottom cells, respectively. The impact of perovskite thickness and doping concentrations were examined and optimized for both tandem configurations. Under optimized conditions, thicknesses of 1000 nm and 1100 nm are the best values of the perovskite absorber layer for 4-T mechanically stacked and optically coupled arrangements, respectively. Likewise, 1 × 1017 cm-3 doping concentration of top cells revealed the highest performance in both structures. With these optimized parameters under tandem configurations, efficiency values of 28.38% and 29.34% were obtained in 4-T mechanically and optically coupled tandems, respectively. Results suggest that by optimizing perovskite thickness and doping concentration, the proposed designs using HTM-free c-PSCs could enhance device performance.

3.
Materials (Basel) ; 14(16)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34442908

ABSTRACT

The current work proposed the application of methylammonium lead iodide (MAPbI3) perovskite microrods toward photo resistor switches. A metal-semiconductor-metal (MSM) configuration with a structure of silver-MAPbI3(rods)-silver (Ag/MAPbI3/Ag) based photo-resistor was fabricated. The MAPbI3 microrods were prepared by adopting a facile low-temperature solution process, and then an independent MAPbI3 microrod was employed to the two-terminal device. The morphological and elemental compositional studies of the fabricated MAPbI3 microrods were performed using FESEM and EDS, respectively. The voltage-dependent electrical behavior and electronic conduction mechanisms of the fabricated photo-resistors were studied using current-voltage (I-V) characteristics. Different conduction mechanisms were observed at different voltage ranges in dark and under illumination. In dark conditions, the conduction behavior was dominated by typical trap-controlled charge transport mechanisms within the investigated voltage range. However, under illumination, the carrier transport is dominated by the current photogenerated mechanism. This study could extend the promising application of perovskite microrods in photo-induced resistor switches and beyond.

4.
RSC Adv ; 8(37): 20952-20967, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-35557744

ABSTRACT

Perovskite solar cells (PSCs) have recently emerged as one of the most exciting fields of research of our time, and the World Economic Forum in 2016 recognized them as one of the top 10 technologies in 2016. With 22.7% power conversion efficiency, PSCs are poised to revolutionize the way power is produced, stored and consumed. However, the widespread use of PSCs requires addressing the stability issue. Therefore, it is now time to focus on the critical step i.e. stability under the operating conditions for the development of a sustainable and durable PV technology based on PSCs. In order to improve the stability of PSCs, hole transport materials (HTMs) have been considered as the paramount components. This is due to the fact that most of the organic HTMs possess a hygroscopic and acidic nature that leads to poor stability of the PSCs. This article reviews briefly but comprehensively the environmental stability issues of PSCs, fundamentals, strategies for improvement, the role of HTMs towards stability and various types of HTMs. Also the environmental parameters affecting the performance of perovskite solar cells including temperature, moisture and light soaking environment have been considered.

5.
Talanta ; 174: 279-284, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28738579

ABSTRACT

This research work demonstrates compositional engineering of an organic-inorganic hybrid nano-composites for modifying absolute threshold of humidity sensors. Vanadyl-2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine (VOPcPhO), an organic semiconductor, doped with Titanium-dioxide nanoparticles (TiO2 NPs) has been employed to fabricate humidity sensors. The morphology of the VOPcPhO:TiO2 nano-composite films has been analyzed by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The sensors have been examined over a wide range of relative humidity i.e. 20-99% RH. The sensor with TiO2 (90nm) shows reduced sensitivity-threshold and improved linearity. The VOPcPhO:TiO2 (90nm) nano-composite film is comprised of uniformly distributed voids which makes the surface more favorable for adsorption of moisture content from environment. The VOPcPhO:TiO2 nano-composite based sensor demonstrates remarkable improvement in the sensing parameter when equated with VOPcPhO sensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...