Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(19): 22041-22052, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35522904

ABSTRACT

Heterostructures made from metal oxide semiconductors (MOS) are fundamental for the development of high-performance gas sensors. Since their importance in real applications, a thorough understanding of the transduction mechanism is vital, whether it is related to a heterojunction or simply to the shell and core materials. A better understanding of the sensing response of heterostructured nanomaterials requires the engineering of heterojunctions with well-defined core and shell layers. Here, we introduce a series of prototypes CNT-nMOS, CNT-pMOS, CNT-pMOS-nMOS, and CNT-nMOS-pMOS hierarchical core-shell heterostructures (CSHS) permitting us to directly relate the sensing response to the MOS shell or to the p-n heterojunction. The carbon nanotubes are here used as highly conductive substrates permitting operation of the devices at relatively low temperature and are not involved in the sensing response. NiO and SnO2 are selected as representative p- and n-type MOS, respectively, and the response of a set of samples is studied toward hydrogen considered as model analyte. The CNT-n,pMOS CSHS exhibit response related to the n,pMOS-shell layer. On the other hand, the CNT-pMOS-nMOS and CNT-nMOS-pMOS CSHS show sensing responses, which in certain cases are governed by the heterojunctions between nMOS and pMOS and strongly depends on the thickness of the MOS layers. Due to the fundamental nature of this study, these findings are important for the development of next generation gas sensing devices.

2.
Phys Chem Chem Phys ; 23(25): 14064-14074, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34159975

ABSTRACT

We report CNT/Al2O3 core-shell nanostructures for the electrochemical detection of dihydroxybenzene (DHB) isomers. Amorphous films of Al2O3 (1.2-15.4 nm in thickness) are uniformly deposited onto the inner and outer walls of CNTs by atomic layer deposition. The effect of the Al2O3 shell thickness on the electrochemical detection of dihydroxybenzene isomers was explored using cyclic and square-wave voltammetry. The best sensing properties are found at a shell thickness of approx. 2.4 nm (CNT/Al2O3(9) sensor), where the oxidation peak currents (sensor-signal) increased ca. 10 times as compared to a sensor fabricated with non-coated CNTs. All of the three DHB isomers (hydroquinone, catechol and resorcinol) are independently detected in the concentration ranges of 2-1000 µmol L-1, 0.5-700 µmol L-1 and 3.5-500 µmol L-1, respectively. The sensors show reliable repeatability, reproducibility, long-term stability, and applicability in the analysis of real samples. Based on these findings, a plausible mechanism is proposed highlighting the role of the Al2O3-shell.

3.
Nanoscale ; 12(39): 20404-20412, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33026013

ABSTRACT

Two-dimensional (2D) transition metal dichalcogenides (TMDs) such as MoS2 are materials for multifarious applications such as sensing, catalysis, and energy storage. Due to their peculiar charge-transport properties, it is always desired to control their morphologies from vertical nanostructures to horizontal basal-plane oriented smooth layers. In this work, we established a low-temperature ALD process for MoS2 deposition using bis(t-butylimino)bis(dimethylamino)molybdenum(vi) and H2S precursors. The ALD reaction parameters, including reaction temperature and precursor pulse times, are systematically investigated and optimized. Polycrystalline MoS2 is conformally deposited on carbon nanotubes, Si-wafers, and glass substrates. Moreover, the morphologies of the deposited MoS2 films are tuned from smooth film to vertically grown flakes, and to nano-dots, by controlling the reaction parameters/conditions. It is noticed that our MoS2 nanostructures showed morphology-dependent optical and electrocatalytic properties, allowing us to choose the required morphology for a targeted application.

4.
ACS Appl Mater Interfaces ; 12(4): 4594-4606, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-31933357

ABSTRACT

The gas-sensing properties and mechanism and the role of the shell thickness of structurally well-defined SnO2/NiO heterostructures are studied. One-dimensional (1D) SnO2/NiO core-shell nanowires (CSNWs) were produced by a two-step process; single-crystalline SnO2-core nanowires (NWs) were synthesized by vapor-liquid-solid (VLS) deposition and then decorated with a polycrystalline NiO-shell layer by atomic layer deposition (ALD). The thickness of the NiO-shell layer was precisely controlled between 2 and 8.2 nm. The electrical conductance of the sensors was decreased many orders of magnitude with the NiO coating, suggesting that the conductivity of the sensors is dominated by Schottky barrier junctions across the n(core)-p(shell) interfaces. The gas-sensing response of pristine SnO2 NWs and SnO2/NiO CSNWs sensors with various thicknesses of the NiO-shell layers was investigated toward hydrogen at various temperatures. The response of the SnO2/NiO-X (X is the number of ALD cycles) CSNWs significantly depends on the thickness of the NiO-shell layer. The SnO2/NiO-100 sensor showed the best performance (NiO-shell thickness ca. 4.1 nm), where the radial modulation of the space-charge region is maximized. The sensing response of the SnO2/NiO-100 sensor was 114 for 500 ppm of hydrogen at 500 °C, which was about four times higher than the response of pristine SnO2 NWs. The sensing mechanism is mainly based on the formation of a p-n junction at the p-NiO-shell and the n-SnO2-core interface and the modulation of the hole-accumulation region in the NiO-shell layer. The remarkable performance of the SnO2/NiO CSNWs sensors toward hydrogen is attributed to the high surface to volume ratio of the 1D SnO2 core-NWs, the conformal NiO shell layer, and the optimized shell layer thickness radially modulating the space-charge regions.

5.
Langmuir ; 36(5): 1305-1319, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-31958957

ABSTRACT

In the last years, hematite has been utilized in a plethora of applications. High aspect-ratio nanohematite and hematite/silica core-shell nanostructures are arousing growing interest for applications exploiting their magnetic properties. Atomic layer deposition (ALD) is utilized here to produce SiO2-coated α-Fe2O3 nanofibers (NFs) through two synthetic routes, viz. electrospinning/calcination/ALD or electrospinning/ALD/calcination. The number of ALD cycles (10-100) modulates the coating thickness, while the chosen route controls the final nanostructure. Porous and partially hollow NFs are produced. Their hierarchical structure and the nature and density of the lattice defects and strain are characterized by combining electron microscopy, diffraction, and spectroscopy techniques. The uncoated hematite NFs mostly have surface-related strain, which is attributed to oxygen vacancies/Fe2+ sites. ALD coating causes microstrain release and decrease of surface states. NFs calcined after ALD have extensive bulk strain, which is ascribed to the presence of dislocations throughout the volume of the NF grains. Bulk strain determines the remanent magnetization, whereas both surface and bulk strain influence the coercive field and the thermal behavior across the Morin temperature, including the magnetic memory effect. To the best of the authors' knowledge, the correlation between lattice defects/strain and magnetic properties of SiO2-coated α-Fe2O3 NFs has never been reported before.

6.
Int J Biol Macromol ; 92: 1-10, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27387014

ABSTRACT

Novel silane crosslinked tough hydrogel scaffolds were prepared using chitosan (CS) and polyvinyl alcohol (PVA) to give network structure and scaffolds properties. The influence of crosslinking and PVA concentration on scaffolds were studied. Fourier transform infrared spectroscopy (FTIR) spectroscopy confirmed the presence of incorporated components. Tensile strength (TS) and fracture strain analysis of scaffolds were detected owing to the mutual effect of chemically and physically crosslinked network. Tough hydrogel scaffolds having 90% CS and 10% PVA exhibited TS of 49.18MPa and 10.15% elongation at break. The contact angle is less than 90° exhibited the hydrophilic nature of the scaffold. X-ray diffraction analysis (XRD) indicated the characteristics peaks fitting to CS and PVA and increase in the crystallinity of scaffolds. Cytotoxicity of scaffolds with different human fibroblast cell lines (F121, F192 and F84) for indirect method and human dermal fibroblast cell lines (F121) for direct method was evaluated. This indicated that these biomaterials were non-toxic, viable to the used cell lines, helpful in the growth of these cells and did not discharge toxic material damaging to the living cells.


Subject(s)
Chitosan , Fibroblasts/metabolism , Hydrogels , Materials Testing , Polyvinyl Alcohol , Tissue Scaffolds/chemistry , Cell Line , Chitosan/chemistry , Chitosan/pharmacology , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Polyvinyl Alcohol/chemistry , Polyvinyl Alcohol/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...