Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 128(24): 4814-4822, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38857364

ABSTRACT

Inorganic molecular crystal (IMC) is a trending class of materials in which structural units comprise molecular cages or clusters bonded via van der Waal forces. The structure-property relationship in IMCs is less known due to the unusual assembly of molecular clusters in these materials. In this paper, the density functional theory-calculated electronic transport properties of the molecular clusters of antimony oxide (Sb4O6), phosphorus triselenide (P4Se3), and phosphorus trioxide (P4O6) are described in detail. The calculated values of highest occupied molecular orbital-lowest unoccupied molecular orbital gaps appeared as 5.487, 2.296, and 4.425 eV for Sb4O6, P4Se3, and P4O6, respectively. The work was carried out to explore the charge transport mechanism in IMCs in order to disclose their potential in practical applications. The calculations involved charge-transfer integral based on Marcus theory to compute the electronic coupling (V), reorganization energies (λ), and hopping rate (k) in the structures. The hopping rate for Sb4O6, P4Se3, and P4O6 is found as 8.49 × 10-12, 1.28 × 10-14, and 2.51 × 10-20 s-1, respectively. The transport properties of Sb4O6 are found better, which predicts the application of the relevant IMC for device grade applications. The findings of this study are important for future application of the IMCs in electronic and optoelectronic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...