Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(33): 80029-80054, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37291345

ABSTRACT

Coastal aquifer overexploitation represents a concerning trigger for water salinization around the world and especially in arid and semi-arid regions along with urban growth and urbanization, as well as land use human-induced changes. This study aims to assess the groundwater quality in the Mitidja alluvial aquifer (northern Algeria) along with its suitability for domestic and agricultural utilizations. A hydrogeochemical approach, based on the interpretation of groundwater physiochemical parameters (EC, pH, dry residue, Ca2+, Mg2+, Na+, K+, Cl-, SO42-, HCO3-, and NO3-) collected during the wet and dry periods for the years 2005 and 2017 along with an isotopic characterization, including stable isotopes to identify the recharge sources for the samples collected in October 2017, has been proposed. The results show the presence of three dominant hydrochemical facies: (i) calcium chloride, (ii) sodium chloride, and (iii) calcium bicarbonate. Groundwater mineralization and salinization are so ascribable carbonates and evaporitic dissolution, especially during the dry periods, and to the presence of seawater. Ion exchange significantly affects groundwater chemistry along with human activities which directly or indirectly contribute in raising groundwater salts concentration. Specifically, NO3- concentrations are very high in the eastern portion of the study area which is exposed to fertilizers pollution where also the Richards classification pointed out the necessity of limit water utilization for agricultural use. The δ2H = f(δ18O) diagram indicates that the recharge origin for this aquifer is mainly due to the oceanic meteoric rainwater from the Atlantic and the Mediterranean Sea. The methodology proposed in this study can be applied in the similar worldwide coastal areas in order to contribute and sustainable water resource management in these regions.


Subject(s)
Groundwater , Water Pollutants, Chemical , Humans , Environmental Monitoring/methods , Algeria , Water Pollutants, Chemical/analysis , Salinity , Groundwater/chemistry , Water , Water Quality
2.
Environ Sci Pollut Res Int ; 23(10): 9598-613, 2016 May.
Article in English | MEDLINE | ID: mdl-26846236

ABSTRACT

To better understand selenium's dynamics in environmental systems, the present study aims to investigate selenium speciation and distribution in black argillaceous sediments, partially fulfilling karstic cavities into the Hydrogeological Experimental Site of Poitiers. These sediments are suspected to be responsible for selenium concentrations exceeding the European Framework Directive's drinking water limit value (10 µg L(-1)) in some specific wells. A combination of a sequential extractions scheme and single parallel extractions was thus applied on a representative argillaceous sample. Impacts of the extractions on mineral dissolution and organic matter mobilization were followed by quantifying major cations and total organic carbon (TOC) in the aqueous extracts. The nature of the released organic matter was characterized using thermochemolysis coupled with gas chromatography-mass spectrometry (GC-MS). About 10 % of selenium from the black argillaceous studied matrix could be defined as 'easily mobilizable' when the majority (around 70 %) revealed associated with the aliphatic and alkaline-soluble organic matter's fraction (about 20 %). In these fractions, selenium speciation was moreover dominated by oxidized species including a mixture of Se(VI) (20-30 %) and Se(IV) (70-80 %) in the 'easily mobilizable' fraction, while only Se(IV) was detected in alkaline-soluble organic matter fraction.


Subject(s)
Geologic Sediments/chemistry , Selenium/analysis , Selenium/chemistry , Chemical Fractionation , France , Gas Chromatography-Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...