Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 8(7)2016 Jun 24.
Article in English | MEDLINE | ID: mdl-30974519

ABSTRACT

Thin films of human serum albumin (HSA) were immobilized on polystyrene (PS) substrates previously functionalized either with polar or nonpolar functional groups. The functionalization was performed by treatment with cold gaseous plasma created in pure oxygen and tetrafluoromethane (CF4) plasmas, respectively. Samples were examined with soft X-rays in the photon energy range of 520 to 710 eV in the ANTARES beam line at SOLEIL Synchrotron. NEXAFS spectra of O K-edge and F K-edge were collected at different spots of the sample, and measurements at each spot were repeated many times. A strong degradation of the HSA protein was observed. The weakly irradiated samples exhibited strong absorption at 531.5 eV associated with the O 1s→π*amide transitions, and a broad non distinctive peak at 540 eV was attributed to the O 1s→σ*C⁻O transitions. Both peaks decreased with increasing irradiation time until they were completely replaced by a broad non-distinctive peak at around 532 eV, indicating the destruction of the original protein conformation. The shortage of the amide groups indicated breakage of the peptide bonds.

2.
J Phys Condens Matter ; 25(38): 382202, 2013 Sep 25.
Article in English | MEDLINE | ID: mdl-23988580

ABSTRACT

The growth of multilayer silicene is an exciting challenge for the future of silicon nano-electronics. Here, we use angle-resolved photoemission spectroscopy to map the entire Brillouin zone (BZ) of (√3 × âˆš3)R30° reconstructed epitaxial multilayer silicene islands, growing on top of the first (3 × 3) reconstructed silicene wetting layer, on Ag(111) substrates. We found Λ- and V-shape linear dispersions, which we relate to the π and π* bands of massless quasiparticles in multilayer silicene, at the BZ centre [Formula: see text] and at all the [Formula: see text] centres of the (√3 × âˆš3)R30° Brillouin zones in the extended scheme, due to folding of the Dirac cones at the [Formula: see text] and [Formula: see text] points of the (1 × 1) silicene BZ. The Fermi velocity of ∼0.3 × 10(6) m s(-1) obtained is highly promising for potential silicene-based devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...