Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 14: 1174926, 2023.
Article in English | MEDLINE | ID: mdl-37123278

ABSTRACT

Purpose: The aim of this study was to investigate the influence of manipulating hypoxic severity with low-intensity exercise on glucose regulation in healthy overweight adults. Methods: In a randomized crossover design, 14 males with overweight (age: 27 ± 5 years; body mass index (BMI) 27.1 ± 1.8 kg⋅m2) completed three exercise trials involving 60 min aerobic exercise cycling at 90% lactate threshold in normoxia (NM, FiO2 = 20.9%), moderate hypoxia (MH, FiO2 = 16.5%) and high hypoxia (HH, FiO2 = 14.8%). A post-exercise oral glucose tolerance test (OGTT) was performed. Venous blood samples were analyzed for incremental area under the curve (iAUC), plasma glucose and insulin, as well as exerkine concentrations (plasma apelin and fibroblast growth factor 21 [FGF-21]) pre- and post-exercise. A 24-h continuous glucose monitoring (CGM) was used to determine interstitial glucose concentrations. Heart rate, oxygen saturation (SpO2) and perceptual measures were recorded during exercise. Results: Post-exercise OGTT iAUC for plasma glucose and insulin concentrations were lower in MH vs. control (p = 0.02). Post-exercise interstitial glucose iAUC, plasma apelin and FGF-21 were not different between conditions. Heart rate was higher in HH vs. NM and MH, and MH vs. NM (p < 0.001), while SpO2 was lower in HH vs. NM and MH, and MH vs. NM (p < 0.001). Overall perceived discomfort and leg discomfort were higher in HH vs. NM and MH (p < 0.05), while perceived breathing difficulty was higher in HH vs. NM only (p = 0.003). Conclusion: Compared to higher hypoxic conditions, performing acute aerobic-based exercise under moderate hypoxia provided a more effective stimulus for improving post-exercise glucose regulation while concomitantly preventing excessive physiological and perceptual stress in healthy overweight adults.

2.
Eur J Sport Sci ; 23(8): 1581-1590, 2023 Aug.
Article in English | MEDLINE | ID: mdl-35912915

ABSTRACT

Acute physiological, perceptual and biomechanical consequences of manipulating both exercise intensity and hypoxic exposure during treadmill running were determined. On separate days, eleven trained individuals ran for 45 s (separated by 135 s of rest) on an instrumented treadmill at seven running speeds (8, 10, 12, 14, 16, 18 and 20 km.h-1) in normoxia (NM, FiO2 = 20.9%), moderate hypoxia (MH, FiO2 = 16.1%), high hypoxia (HH, FiO2 = 14.1%) and severe hypoxia (SH, FiO2 = 13.0%). Running mechanics were collected over 20 consecutive steps (i.e. after running ∼25 s), with concurrent assessment of physiological (heart rate and arterial oxygen saturation) and perceptual (overall perceived discomfort, difficulty breathing and leg discomfort) responses. Two-way repeated-measures ANOVA (seven speeds × four conditions) were used. There was a speed × condition interaction for heart rate (p = 0.045, ηp2 = 0.22), with lower values in NM, MH and HH compared to SH at 8 km.h-1 (125 ± 12, 125 ± 11, 128 ± 12 vs 132 ± 10 b.min-1). Overall perceived discomfort (8 and 16 km.h-1; p = 0.019 and p = 0.007, ηp2 = 0.21, respectively) and perceived difficulty breathing (all speeds; p = 0.023, ηp2 = 0.37) were greater in SH compared to MH, whereas leg discomfort was not influenced by hypoxic exposure. Minimal difference was observed in the twelve kinetics/kinematics variables with hypoxia (p > 0.122; ηp2 = 0.19). Running at slower speeds in combination with severe hypoxia elevates physiological and perceptual responses without a corresponding increase in ground reaction forces.Highlights The extent to which manipulating hypoxia severity (between normoxia and severe hypoxia) and running speed (from 8 to 20 km.h-1) influence acute physiological and perceptual responses, as well as kinetic and kinematic adjustments during treadmill running was determined.Running at slower speeds in combination with severe hypoxia elevates heart rate, while this effect was not apparent at faster speeds.Arterial oxygen saturation was increasingly lower as running speed and hypoxic severity increased.Overall perceived discomfort (8 and 16 km.h-1) and perceived difficulty breathing (all speeds) were lower in moderate hypoxia than in severe hypoxia, whereas leg discomfort remained unchanged with hypoxic exposure.


Subject(s)
Hypoxia , Running , Humans , Running/physiology , Oxygen Consumption
3.
Bioinorg Chem Appl ; 2022: 2004052, 2022.
Article in English | MEDLINE | ID: mdl-35959229

ABSTRACT

S-4-methylbenzyl-ß-N-(2-methoxybenzylmethylene)dithiocarbazate ligand, 1, prepared from S-(4-methylbenzyl)dithiocarbazate, was used to produce a novel series of transition metal complexes of the type, [M (L)2] [M = Cu(II) (2), Ni(II) (3), and Zn(II) (4), L = 1]. The ligand and its complexes were investigated by elemental analysis, FTIR, 1H and 13C-NMR, MS spectrometry, and molar conductivity. In addition, single X-ray crystallography was also performed for ligand, 1, and complex 3. The Hirshfeld surface analyses were also performed to know about various bonding interactions in the ligand, 1, and complex 3. The investigated compounds were also tested to evaluate their cytotoxic behaviour. However, complex 2 showed promising results against MCF-7 and MDA-MB-213 cancer cell lines. Furthermore, the interaction of CT-DNA with ligand, 1, and complex 2 was also studied using the electronic absorption method, revealing that the compounds have potential DNA-binding ability via hydrogen bonding and hydrophobic and van der Waals interactions. A molecular docking study of complex 2 was also carried out, which revealed that free binding free energy value was -7.39 kcal mol-1.

4.
Acta Crystallogr E Crystallogr Commun ; 71(Pt 11): o819, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26594544

ABSTRACT

The mol-ecule of the title Schiff base compound, C14H14N2O2, displays an E conformation with respect the imine C=N double bond. The mol-ecule is approximately planar, with the dihedral angle formed by the planes of the pyridine and benzene rings being 5.72 (6)°. There is an intra-molecular hydrogen bond involving the phenolic H and imine N atoms.

SELECTION OF CITATIONS
SEARCH DETAIL
...