Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Cardiol Hypertens ; 4: 100024, 2020 Mar.
Article in English | MEDLINE | ID: mdl-33447753

ABSTRACT

INTRODUCTION: Labisia pumila has been reported to possess activities including antioxidant, anti-aging and anti-cancer but there is no report on its vasorelaxant effects. OBJECTIVE: This study aims to fractionate water extract of Labisia pumila, identify the compound(s) involved and elucidate the possible mechanism(s) of its vasorelaxant effects. METHODS: Water extract of Labisia pumila was subjected to liquid-liquid extraction to obtain ethyl acetate, n-butanol and water fractions. In SHR aortic ring preparations, water fraction (WF-LPWE) was established as the most potent fraction for vasorelaxation. The pharmacological mechanisms of the vasorelaxant effect of WF-LPWE were investigated with and without the presence of various inhibitors. The cumulative dose-response curves of potassium chloride (KCl)-induced contractions were conducted to study the possible mechanisms of WF-LPWE in reducing vasoconstriction. RESULTS: WF-LPWE produced dose-dependent vasorelaxant effect in endothelium-denuded aortic ring and showed non-competitive inhibition of dose-response curves of PE-induced contraction, and at its higher concentrations reduced KCl-induced contraction. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) significantly inhibited vasorelaxant effect of WF-LPWE. WF-LPWE significantly reduced the release of intracellular calcium ion (Ca2+) from the intracellular stores and suppressed the calcium chloride (CaCal2)-induced contraction. Nω-nitro-L-arginine methyl ester (L-NAME), methylene blue, indomethacin and atropine did not influence the vasorelaxant effects of WF-LPWE. CONCLUSION: WF-LPWE exerts its vasorelaxant effect independently of endothelium and possibly by inhibiting the release of calcium from intracellular calcium stores, receptor-operated calcium channels and formation of inositol 1,4,5- triphosphate. WF-LPWE vasorelaxant effect may also mediated via nitric oxide-independent direct involvement of soluble guanylate cyclase (sGC)/ cyclic guanosine monophosphate (cGMP) pathways.

2.
J Integr Med ; 18(1): 46-58, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31882255

ABSTRACT

OBJECTIVE: To evaluate vasorelaxant and vasoconstriction effects of Zingiber officinale var. rubrum (ZOVR) on live rats and isolated aortic rings of spontaneously hypertensive rats (SHRs). METHODS: Extracts of ZOVR were subjected to in-vivo antihypertensive screening using noninvasive blood pressures in SHRs. The most potent extract, ZOVR petroleum ether extract (ZOP) was then fractionated using n-hexane, chloroform and water. Isolated thoracic aortic rings were harvested and subjected to vascular relaxation studies of n-hexane fraction of ZOP (HFZOP) with incubation of different antagonists such as Nω-nitro-l-arginine methyl ester (L-NAME, 10 µmol/L), indomethacin (10 µmol/L), methylene blue (10 µmol/L), atropine (1 µmol/L), glibenclamide (10 µmol/L), prazosin (0.01 µmol/L), and propranolol (1 µmol/L). RESULTS: During the screening of various ZOVR extracts, ZOP produced the most reduction in blood pressures of SHRs and so did HFZOP. HFZOP significantly decreased phenylephrine-induced contraction and enhanced acetylcholine-induced relaxation. L-NAME, indomethacin, methylene blue, atropine, and glibenclamide significantly potentiated the vasorelaxant effects of HFZOP. Propranolol and prazosin did not alter the vasorelaxant effects of HFZOP. HFZOP significantly suppressed the Ca2+-dependent contraction and influenced the ratio of the responses to phenylephrine in Ca2+-free medium. CONCLUSION: This study demonstrates that ZOP may exert an antihypertensive effect in the SHR model. Its possible vascular relaxation mechanisms involve nitric oxide and prostacyclin release, activation of cGMP-KATP channels, stimulation of muscarinic receptors, and transmembrane calcium channel or Ca2+ release from intracellular stores. Possible active compounds that contribute to the vasorelaxant effects are 6-gingerol, 8-gingerol and 6-shogaol.


Subject(s)
Antihypertensive Agents/pharmacology , Aorta, Thoracic/drug effects , Blood Pressure/drug effects , Hypertension/drug therapy , Plant Extracts/pharmacology , Vasodilator Agents/pharmacology , Zingiber officinale/chemistry , Animals , Disease Models, Animal , Malaysia , Male , Rats , Rats, Inbred SHR
3.
Int J Vasc Med ; 2013: 456852, 2013.
Article in English | MEDLINE | ID: mdl-23878738

ABSTRACT

Orthosiphon stamineus Benth has been traditionally used to treat hypertension. The study aimed to investigate the vascular reactivity of water extract (WOS) and water : methanolic (1 : 1) extract (WMOS) of Orthosiphon stamineus Benth and AT1 receptors blocker in the mechanisms of antihypertensive mediated by α 1-adrenergic receptor and EDNO and PGI2 releases in the SHR aortic rings. SHR (230-280 g) were divided into four groups: control, WOS, WMOS, and losartan. After being fed orally for 14 days, the aorta was harvested and subjected to PE (10(-9) to 10(-5) M) and ACh (10(-9) to 10(-5) M) with and without L-NAME (100 µM) and indomethacin (10 µM), respectively. WOS, WMOS, and losartan significantly reduced the contractile responses to PE intact suggesting the importance of endothelium in vasorelaxation. Losartan significantly enhanced the ACh-induced vasorelaxation. L-NAME significantly inhibited the ACh-induced relaxation in all groups. Indomethacin enhanced ACh-induced vasorelaxation in WMOS. Collectively, Orthosiphon stamineus leaves extract reduced vasoconstriction responses by the alteration of α 1-adrenergic and AT1 receptors activities. The involvement of EDNO releases was clearly observed in this plant. In WOS, PGI2 releases might not participate in the ACh-induced vasorelaxation. However, in WMOS, enhancement of vasorelaxation possibly due to continuous release of PGI2.

SELECTION OF CITATIONS
SEARCH DETAIL
...