Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(35): 24491-24498, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37588974

ABSTRACT

W-Bi2O3 composites were fabricated using the hot isostatic pressing technique for the first time. The duration of the samples sintering was 3 minutes under conditions of high pressure and temperature. The study of microstructural features and chemical composition of sintered samples was carried out using scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. The effect of temperature on the quality of the obtained W-Bi2O3 composites is determined. The densest samples were obtained at a pressure of 5 GPa and temperatures of 25 °C and 500 °C, the densities of which were 18.10 and 17.85 g cm-3, respectively. It is presented that high temperature exposure during sintering adversely affects both the composite density and microstructure due to the redox reaction accompanied by the reduction of Bi and the oxidation of W. The results of the W-Bi2O3 structure study using X-ray diffraction analysis showed that all samples included the main bulk-centered cubic W phase. The presence of the WO2 phase is noted only when the sintering temperature is increased up to 850 °C, which is confirmed by the appearance of diffraction peaks that correspond to 111 and 22-2 crystallographic planes. The shielding efficiency of the W-Bi2O3 composite against gamma radiation using the Phy-X/PSD software was evaluated. A Co60 isotope with an energy of 0.826-2.506 MeV was used as a source of gamma radiation. The calculation results were compared with those for Pb and Bi. Key shielding parameters such as the linear attenuation coefficient, half-value layer, tenth-value layer, mean free path, and effective atomic number are determined. The calculation results revealed that the W-Bi2O3 composite surpasses Pb and Bi in its shielding properties, which makes it promising for use as a prospective material for radiation shielding applications.

2.
Nanomaterials (Basel) ; 12(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35889606

ABSTRACT

The results of studies on the wettability properties and preparation of porous anodic alumina (PAA) membranes with a 3.3 ± 0.2 µm thickness and a variety of pore sizes are presented in this article. The wettability feature results, as well as the fabrication processing characteristics and morphology, are presented. The microstructure effect of these surfaces on wettability properties is analyzed in comparison to outer PAA surfaces. The interfacial contact angle was measured for amorphous PAA membranes as-fabricated and after a modification technique (pore widening), with pore sizes ranging from 20 to 130 nm. Different surface morphologies of such alumina can be obtained by adjusting synthesis conditions, which allows the surface properties to change from hydrophilic (contact angle is approximately 13°) to hydrophobic (contact angle is 100°). This research could propose a new method for designing functional surfaces with tunable wettability. The potential applications of ordinary alumina as multifunctional films are demonstrated.

3.
Nanomaterials (Basel) ; 12(10)2022 May 11.
Article in English | MEDLINE | ID: mdl-35630865

ABSTRACT

The W-Cu composites with nanosized grain boundaries and high effective density were fabricated using a new fast isostatic hot pressing method. A significantly faster method was proposed for the formation of W-Cu composites in comparison to the traditional ones. The influence of both the high temperature and pressure conditions on the microstructure, structure, chemical composition, and density values were observed. It has been shown that W-Cu samples have a polycrystalline well-packed microstructure. The copper performs the function of a matrix that surrounds the tungsten grains. The W-Cu composites have mixed bcc-W (sp. gr. Im 3¯ m) and fcc-Cu (sp. gr. Fm 3¯ m) phases. The W crystallite sizes vary from 107 to 175 nm depending on the sintering conditions. The optimal sintering regimes of the W-Cu composites with the highest density value of 16.37 g/cm3 were determined. Tungsten-copper composites with thicknesses of 0.06-0.27 cm have been fabricated for the radiation protection efficiency investigation against gamma rays. It has been shown that W-Cu samples have a high shielding efficiency from gamma radiation in the 0.276-1.25 MeV range of energies, which makes them excellent candidates as materials for radiation protection.

4.
Nanomaterials (Basel) ; 12(8)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35458052

ABSTRACT

The paper discusses the formation of Ta2O5 pillars with Ni tips during thin porous anodic alumina through-mask anodization on Si/SiO2 substrates. The tantalum nanopillars were formed through porous masks in electrolytes of phosphoric and oxalic acid. The Ni tips on the Ta2O5 pillars were formed via vacuum evaporation through the porous mask. The morphology, structure, and magnetic properties at 4.2 and 300 K of the Ta2O5 nanopillars with Ni tips have been studied using scanning electron microscopy, X-ray diffraction, and vibrating sample magnetometry. The main mechanism of the formation of the Ta2O5 pillars during through-mask anodization was revealed. The superparamagnetic behavior of the magnetic hysteresis loop of the Ta2O5 nanopillars with Ni tips was observed. Such nanostructures can be used to develop novel functional nanomaterials for magnetic, electronic, biomedical, and optical nano-scale devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...