Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Iran J Parasitol ; 17(4): 525-534, 2022.
Article in English | MEDLINE | ID: mdl-36694567

ABSTRACT

Background: Infections by Plasmodium falciparum, are becoming increasingly difficult to treat. Therefore, there is an urgent need for novel antimalarial agents' discovery against infection. In present study, we described a 2'-O-Methyl gapmer phosphorothioate oligonucleotide antisense targeting translation initiation region of 3D7 strain RH5 gene. Methods: The study was conducted in Pasteur Institute of Iran in 2020. ODNs effects were measured by microscopic examination and real time RT-PCR. For microscopy, microplates were charged with 2'-OMe ODNs at different dilutions. Unsynchronized parasites were added to a total of 0.4 ml (0.4% parasitemia, 5% red blood cells), and slides were prepared. Proportion of infected cells was measured by counting at least 500 red blood cells. Results: RH5 genes start codon regions selected as conserved region besed on alignment results. Gap-RH5-As which was complementary to sequence surrounding AUG RH5 start codon significantly reduced parasite growth (>90% at 50 nM) compared to sense sequence control (Gap-RH5-Se) (17%), (P<0.001). RH5 transcripts were dramatically reduced after exposed to ODNs at a concentration of 5-500 nM for 48 h. Conclusion: Gemnosis delivery of a chimeric gapmer PS-ODN with 2'-OMe modifications at both sides had high antisense activity at low concentrations (10-100 nM) and shown a good efficiency to reach to target mRNA in human RBCs. Anti-parasite effect was correlated to reduction of target gene mRNA level. In addition, 2'-OMe ODNs free delivery is an effective way and does not need any carrier molecules or particles.

2.
Biotechnol Appl Biochem ; 65(6): 841-847, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29972607

ABSTRACT

Acute myeloid leukemia (AML) is a clonal hematologic malignancy arising from a small population of leukemic cells initiating the disease. CD123 is differentially expressed in AML blasts compared with normal hematopoietic stem and progenitor cells. The aim of this study was to develop specific monoclonal antibodies (mAbs) directed against AML. Three BALB/c mice were immunized with the human CD123 antigen, and the immune spleen cells were fused with the SP2/0 myeloma cell line. Hybridomas were screened by indirect enzyme-linked immunosorbent assay (ELISA), and the positive hybrids were cloned by limiting dilution. The mAb isotype was determined, ascitic fluids were produced, and antibodies were purified using Fast protein liquid chromatography (Sephacryl S-200). The specificity of the hybridomas was examined by ELISA, cell-based ELISA, and flow cytometry. After three rounds of cell cloning, four anti-CD123 secreting hybridomas were obtained with the IgM isotype. Among them, one stable hybrid, designated sC1, exhibited the higher ability to recognize the CD123 antigen, as compared with the other hybridomas. Our results showed that sC1 has the ability to bind specifically to the CD123 antigen (41.36%) on the cell surface. The anti-CD123 mAb produced in this study may be useful for the development of both diagnostic and therapeutic purposes for AML.


Subject(s)
Antibodies, Monoclonal/immunology , Biomarkers, Tumor/immunology , Interleukin-3 Receptor alpha Subunit/immunology , Leukemia, Myeloid, Acute/immunology , Neoplastic Stem Cells/immunology , Animals , Biomarkers, Tumor/analysis , Enzyme-Linked Immunosorbent Assay , Female , Humans , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred BALB C , Neoplastic Stem Cells/pathology , Tumor Cells, Cultured
3.
Iran Biomed J ; 21(4): 270-4, 2017 07.
Article in English | MEDLINE | ID: mdl-28410549

ABSTRACT

Background: Reduction/alkylation is one of the leading strategies for the development of antibody drug conjugates (ADCs). Precise control of the reduction process would not only yield a defined number of free thiols per antibody but also result in development of more homogenous conjugates. Methods: In the present study, we investigated the effect of various dithiothreitol (DTT) concentrations, temperature conditions, and DTT exposure times on antibody reduction. After antibody reduction, the Ellman's test and SDS-PAGE analysis were used to evaluate free thiols produced and confirm the reduction process, respectively. Results: DTT concentration seems to be a potential factor in the reduction process. Concentrations of 0.1, 1, 5, 10, 20, 50, and 100 mM DTT at 37°C for 30 minutes resulted in approximately 0.4, 1.2, 5.4, 7, 8, 8, and 8 thiols per antibody, respectively. Conclusion: Optimized site-specific conjugation can provide better process control and reproducibility for the development of disulfide-based ADCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...