Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 921: 171070, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38382608

ABSTRACT

In coastal lagoons, eutrophication and hydrology are interacting factors that produce distortions in biogeochemical nitrogen (N) and phosphorus (P) cycles. Such distortions affect nutrient relative availability and produce cascade consequences on primary producer's community and ecosystem functioning. In this study, the seasonal functioning of a coastal lagoon was investigated with a multielement approach, via the construction and analysis of network models. Spring and summer networks, both for N and P flows, have been simultaneously compiled for the northern transitional and southern confined area of the hypertrophic Curonian Lagoon (SE Baltic Sea). Ecological Network Analysis was applied to address the combined effect of hydrology and seasonality on biogeochemical processes. Results suggest that the ecosystem is more active and presents higher N and P fluxes in summer compared to spring, regardless of the area. Furthermore, larger internal recycling characterizes the confined compared to the transitional area, regardless of the season. The two areas differed in the fate of available nutrients. The transitional area received large riverine inputs that were mainly transferred to the sea without the conversion into primary producers' biomass. The confined area had fewer inputs but proportionally larger conversion into phytoplankton biomass. In summer, particularly in the confined area, primary production was inefficiently consumed by herbivores. Most phytoplanktonic N and P, in the confined area more than in the transitional area, were conveyed to the detritus pathway where P, more than N, was recycled, contributing to the unbalance in N:P stoichiometry and favouring N-fixing cyanobacteria over other phytoplankton groups. The findings of this study provide a comprehensive understanding of N and P circulation patterns in lagoon areas characterized by different hydrology. They also support the importance of a stoichiometric approach to trace relative differences in N and P recycling and abundance, that promote blooms, drive algal communities and whole ecosystem functioning.


Subject(s)
Ecosystem , Nitrogen , Nitrogen/analysis , Phosphorus/analysis , Biomass , Phytoplankton , Eutrophication
2.
PLoS One ; 12(11): e0187143, 2017.
Article in English | MEDLINE | ID: mdl-29140983

ABSTRACT

Protected Areas are a key component of nature conservation. They can play an important role in counterbalancing the impacts of ecosystem degradation. For an optimal protection of a Protected Area it is essential to account for the variables underlying the major Ecosystem Services an area delivers, and the threats upon them. Here we show that the perception of these important variables differs markedly between scientists and managers of Protected Areas in mountains and transitional waters. Scientists emphasise variables of abiotic and biotic nature, whereas managers highlight socio-economic, cultural and anthropogenic variables. This indicates fundamental differences in perception. To be able to better protect an area it would be advisable to bring the perception of scientists and managers closer together. Intensified and harmonised communication across disciplinary and professional boundaries will be needed to implement and improve Ecosystem Service oriented management strategies in current and future Protected Areas.


Subject(s)
Administrative Personnel , Conservation of Natural Resources/methods , Ecosystem , Interprofessional Relations , Science , Europe , Humans , Workforce
3.
Mar Drugs ; 9(9): 1625-1648, 2011.
Article in English | MEDLINE | ID: mdl-22131962

ABSTRACT

Marine chemical ecology comprises the study of the production and interaction of bioactive molecules affecting organism behavior and function. Here we focus on bioactive compounds and interactions associated with phytoplankton, particularly bloom-forming diatoms, prymnesiophytes and dinoflagellates. Planktonic bioactive metabolites are structurally and functionally diverse and some may have multiple simultaneous functions including roles in chemical defense (antipredator, allelopathic and antibacterial compounds), and/or cell-to-cell signaling (e.g., polyunsaturated aldehydes (PUAs) of diatoms). Among inducible chemical defenses in response to grazing, there is high species-specific variability in the effects on grazers, ranging from severe physical incapacitation and/or death to no apparent physiological response, depending on predator susceptibility and detoxification capability. Most bioactive compounds are present in very low concentrations, in both the producing organism and the surrounding aqueous medium. Furthermore, bioactivity may be subject to synergistic interactions with other natural and anthropogenic environmental toxicants. Most, if not all phycotoxins are classic secondary metabolites, but many other bioactive metabolites are simple molecules derived from primary metabolism (e.g., PUAs in diatoms, dimethylsulfoniopropionate (DMSP) in prymnesiophytes). Producing cells do not seem to suffer physiological impact due to their synthesis. Functional genome sequence data and gene expression analysis will provide insights into regulatory and metabolic pathways in producer organisms, as well as identification of mechanisms of action in target organisms. Understanding chemical ecological responses to environmental triggers and chemically-mediated species interactions will help define crucial chemical and molecular processes that help maintain biodiversity and ecosystem functionality.


Subject(s)
Ecosystem , Plankton/chemistry , Animals , Phytoplankton/chemistry , Phytoplankton/physiology , Plankton/physiology , Zooplankton/chemistry , Zooplankton/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...