Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pan Afr Med J ; 47: 56, 2024.
Article in English | MEDLINE | ID: mdl-38646132

ABSTRACT

Introduction: the laboratory diagnosis of meningococcal meningitis relies on conventional techniques. This study aims to evaluate the correlation between the reduced sensitivity to penicillin G of Neisseria meningitidis (N.m) strains and the expression of the altered PBP 2 gene. Methods: out of 190 strains of N.m isolated between 2010 and 2021 at the bacteriology laboratories of Ibn Rochd University Hospital Centre (IR-UHC) in Casablanca and the UHC Mohammed VI in Marrakech, 23 isolates were part of our study. We first determined their state of sensitivity to penicillin G by E-Test strips and searched for the expression of the penA gene by PCR followed by Sanger sequencing. Results: of all the confirmed cases of N.m, 93.15% (n=177) are of serogroup B, 75.2% (n = 143) are sensitive to penicillin G and 24.73% (n = 47) are of intermediate sensitivity. No resistance to penicillin G was observed. Reduced sensitivity to penicillin G in N.m is characterized by mutations namely F504 L, A510 V, I515 V, G541 N and I566 V located in the C-terminal region of the penA gene encoding the penicillin-binding protein 2 (PBP2) (mosaic gene). Conclusion: our study presents useful data for the phenotypic and genotypic monitoring of resistance to penicillin G in N.m and can contribute to the analysis of genetic exchanges between different Neisseria species.


Subject(s)
Anti-Bacterial Agents , Hospitals, University , Meningitis, Meningococcal , Microbial Sensitivity Tests , Neisseria meningitidis , Penicillin G , Morocco , Humans , Anti-Bacterial Agents/pharmacology , Neisseria meningitidis/genetics , Neisseria meningitidis/drug effects , Neisseria meningitidis/isolation & purification , Penicillin G/pharmacology , Meningitis, Meningococcal/microbiology , Meningitis, Meningococcal/drug therapy , Polymerase Chain Reaction , Mutation , Penicillin-Binding Proteins/genetics , Bacterial Proteins/genetics , Penicillin Resistance/genetics , Drug Resistance, Bacterial/genetics , Neisseria meningitidis, Serogroup B/genetics , Neisseria meningitidis, Serogroup B/isolation & purification , Neisseria meningitidis, Serogroup B/drug effects
2.
Access Microbiol ; 2(9): acmi000157, 2020.
Article in English | MEDLINE | ID: mdl-33195986

ABSTRACT

Surveillance of invasive meningococcal diseases (IMD) must be carried out regularly and continuously in order to detect the emergence of strains of reduced susceptibility to antibiotics for therapeutic and prophylactic use and the appearance of new invasive clones. Molecular-typing approaches allow reliable traceability and powerful epidemiological analysis. This is an epidemiological study of Neisseria meningitidis causing meningitis in Casablanca, Morocco. The grouping was confirmed by PCR mainly on the isolates from cerebrospinal fluid (CSF). A total of 245 confirmed isolates of N .meningitidis were obtained between 2010 and 2019 of which 93 % are of group B. Overall, 24 % of all the isolates have a reduced susceptibility to penicillin G, but no resistance to penicillin G has been reported. All the isolated strains are susceptible to third-generation cephalosporins (3GCs). Genotyping by multilocus sequence typing (MLST) of a selection of 18 strains showed that the majority of isolates belong to the invasive clonal complex CC 32(9/18) followed by the CC 41/44(3/18).

3.
J Clin Microbiol ; 58(3)2020 02 24.
Article in English | MEDLINE | ID: mdl-31915288

ABSTRACT

Meningococcal meningitis remains a life-threatening disease worldwide, with high prevalence in the sub-Saharan meningitis belt. A rapid diagnosis is crucial for implementing adapted antimicrobial treatment. We describe the performances of a new immunochromatographic test (MeningoSpeed, BioSpeedia, France) for detecting and grouping Neisseria meningitidis Cerebrospinal fluids (CSFs) were collected from 5 African countries and France. For the rapid diagnostic test (RDT), the CSF sample was deposited on each of the 3 cassettes for a total volume of 90 µl. The results of the RDT were compared to those of a reference multiplex PCR assay detecting the major serogroups of N. meningitidis on 560 CSF specimens. Five specimens were found uninterpretable by RDT (0.9%). The results of interpretable specimens were as follows: 305 positive and 212 negative samples by both techniques, 14 positive by PCR only, and 24 positive by RDT only (sensitivity, specificity, and positive and negative predictive values of 92.7%, 93.8%, 95.6%, and 89.8%, respectively, with an accuracy of 93.2% and a kappa test of 0.89; P < 0.05). From 319 samples positive by PCR for serogroups A, C, W, X, or Y, the grouping results were concordant for 299 specimens (sensitivity of 93.0%, 74.4%, 98.1%, 100%, and 83.3% for serogroups A, C, W, X, and Y, respectively). The MeningoSpeed RDT exhibited excellent performances for the rapid detection of N. meningitidis antigens. It can be stored at room temperature, requires a minimal amount of CSF, is performed in 15 minutes or less, and is easy to use at bedside.


Subject(s)
Meningitis, Meningococcal , Neisseria meningitidis , Africa , Antigens, Bacterial , Cerebrospinal Fluid , France , Humans , Meningitis, Meningococcal/diagnosis , Neisseria meningitidis/genetics , Sensitivity and Specificity
4.
J Clin Microbiol ; 56(7)2018 07.
Article in English | MEDLINE | ID: mdl-29743304

ABSTRACT

Meningococcal epidemiology may change unpredictably, and typing of Neisseria meningitidis isolates is crucial for the surveillance of invasive meningococcal disease (IMD). Few data are available regarding the meningococcal epidemiology in countries of North Africa. We aimed to explore invasive meningococcal isolates from the Casablanca region in Morocco. We used whole-genome sequencing (WGS) to characterize 105 isolates from this region during the period of 2011 to 2016. Our data showed that the majority (n = 100) of the isolates belonged to serogroup B. Genotyping indicated that most of the isolates (n = 62) belonged to sequence type 33 of clonal complex 32. The isolates also showed the same PorA and FetA markers and clustered together on the basis of WGS phylogenetic analysis; they seemed to correspond to an expansion of local isolates in the Casablanca region, as reported for similar isolates in several other countries. These data suggest that serogroup B isolates may predominate in Morocco, which may have an important impact in the design of vaccination strategies.


Subject(s)
Meningococcal Infections/microbiology , Neisseria meningitidis/classification , Neisseria meningitidis/genetics , Phylogeny , Adolescent , Adult , Bacterial Outer Membrane Proteins/genetics , Child , Child, Preschool , DNA, Bacterial/genetics , Genome, Bacterial/genetics , Genotype , Humans , Infant , Infant, Newborn , Middle Aged , Morocco/epidemiology , Multilocus Sequence Typing , Penicillin Resistance/genetics , Porins/genetics , Sequence Analysis, DNA , Serogroup , Whole Genome Sequencing , Young Adult
5.
J Infect ; 75(1): 1-11, 2017 07.
Article in English | MEDLINE | ID: mdl-28455205

ABSTRACT

The Global Meningococcal Initiative (GMI) has recently considered current issues in Middle Eastern and African countries, and produced two recommendations: (i) that vaccination of attendees should be considered for some types of mass-gathering events, as some countries mandate for the Hajj, and (ii) vaccination of people with human immunodeficiency virus should be used routinely, because of increased meningococcal disease (MD) risk. Differences exist between Middle Eastern and African countries regarding case and syndrome definitions, surveillance, and epidemiologic data gaps. Sentinel surveillance provides an overview of trends and prevalence of different capsular groups supporting vaccine selection and planning, whereas cost-effectiveness decisions require comprehensive disease burden data, ideally counting every case. Surveillance data showed importance of serogroup B MD in North Africa and serogroup W expansion in Turkey and South Africa. Success of MenAfriVac® in the African "meningitis belt" was reviewed; the GMI believes similar benefits may follow development of a low-cost meningococcal pentavalent vaccine, currently in phase 1 clinical trial, by 2022. The importance of carriage and herd protection for controlling invasive MD and the importance of advocacy and awareness campaigns were also highlighted.


Subject(s)
Disease Outbreaks , Meningococcal Infections/epidemiology , Africa South of the Sahara/epidemiology , Africa, Northern/epidemiology , Humans , Immunization Programs , Meningitis, Meningococcal/epidemiology , Meningococcal Infections/microbiology , Meningococcal Infections/prevention & control , Meningococcal Vaccines/administration & dosage , Meningococcal Vaccines/adverse effects , Middle East/epidemiology , Neisseria meningitidis/immunology , Neisseria meningitidis/isolation & purification , Serogroup , Turkey/epidemiology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...