Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioeng Transl Med ; 6(1): e10188, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33532588

ABSTRACT

Cancer therapy is increasingly shifting toward targeting the tumor immune microenvironment and influencing populations of tumor infiltrating lymphocytes. Breast cancer presents a unique challenge as tumors of the triple-negative breast cancer subtype employ a multitude of immunosilencing mechanisms that promote immune evasion and rapid growth. Treatment of breast cancer with chemotherapeutics has been shown to induce underlying immunostimulatory responses that can be further amplified with the addition of immune-modulating agents. Here, we investigate the effects of combining doxorubicin (DOX) and gemcitabine (GEM), two commonly used chemotherapeutics, with monophosphoryl lipid A (MPLA), a clinically used TLR4 adjuvant derived from liposaccharides. MPLA was incorporated into the lipid bilayer of liposomes loaded with a 1:1 molar ratio of DOX and GEM to create an intravenously administered treatment. In vivo studies indicated excellent efficacy of both GEM-DOX liposomes and GEM-DOX-MPLA liposomes against 4T1 tumors. In vitro and in vivo results showed increased dendritic cell expression of CD86 in the presence of liposomes containing chemotherapeutics and MPLA. Despite this, a tumor rechallenge study indicated little effect on tumor growth upon rechallenge, indicating the lack of a long-term immune response. GEM/DOX/MPLA-L displayed remarkable control of the primary tumor growth and can be further explored for the treatment of triple-negative breast cancer with other forms of immunotherapy.

2.
Nanoscale ; 12(41): 21255-21270, 2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33063812

ABSTRACT

Occlusive thrombosis is a central pathological event in heart attack, stroke, thromboembolism, etc. Therefore, pharmacological thrombolysis or anticoagulation is used for treating these diseases. However, systemic administration of such drugs causes hemorrhagic side-effects. Therefore, there is significant clinical interest in strategies for enhanced drug delivery to clots while minimizing systemic effects. One such strategy is by using drug-carrying nanoparticles surface-decorated with clot-binding ligands. Efforts in this area have focused on binding to singular targets in clots, e.g. platelets, fibrin, collagen, vWF or endothelium. Targeting vWF, collagen or endothelium maybe sub-optimal since in vivo these entities will be rapidly covered by platelets and leukocytes, and thus inaccessible for sufficient nanoparticle binding. In contrast, activated platelets and fibrin are majorly accessible for particle-binding, but their relative distribution in clots is highly heterogeneous. We hypothesized that combination-targeting of 'platelets + fibrin' will render higher clot-binding efficacy of nanoparticles, compared to targeting platelets or fibrin singularly. To test this, we utilized liposomes as model nanoparticles, decorated their surface with platelet-binding peptides (PBP) or fibrin-binding peptides (FBP) or combination (PBP + FBP) at controlled compositions, and evaluated their binding to human blood clots in vitro and in a mouse thrombosis model in vivo. In parallel, we developed a computational model of nanoparticle binding to single versus combination entities in clots. Our studies indicate that combination targeting of 'platelets + fibrin' enhances the clot-anchorage efficacy of nanoparticles while utilizing lower ligand densities, compared to targeting platelets or fibrin only. These findings provide important insights for vascular nanomedicine design.


Subject(s)
Drug Delivery Systems , Nanoparticles , Pharmaceutical Preparations , Thrombosis , Blood Platelets , Fibrin , Humans , Thrombosis/drug therapy
3.
J Control Release ; 323: 36-46, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32283210

ABSTRACT

Combination chemotherapy is the leading clinical option for cancer treatment. The current approach to designing drug combinations includes in vitro optimization to maximize drug cytotoxicity and/or synergistic drug interactions. However, in vivo translatability of drug combinations is complicated by the disparities in drug pharmacokinetics and activity. In vitro cellular assays also fail to represent the immune response that can be amplified by chemotherapy when dosed appropriately. Using three common chemotherapeutic drugs, gemcitabine (GEM), irinotecan (IRIN), and a prodrug form of 5-flurouracil (5FURW), paired with another common drug and immunogenic cell death inducing agent, doxorubicin (DOX), we sought to determine the in vitro parameters that predict the in vivo outcomes of drug combinations in the highly aggressive orthotopic 4T1 murine breast cancer model. With liposomal encapsulation of each drug pair, we enabled uniform drug pharmacokinetics across the drug combinations, thus allowing us to study the inherent benefits of the drug pairs and compare them to DOX liposomes representative of DOXIL®. Surprisingly, the Hill coefficient (HC) of the in vitro dose-response Hill equation provided a better prediction of in vivo efficacy than drug IC50 or combination index. GEM/DOX liposomes exhibited a high HC in vitro and an increase in M1/M2 macrophage ratio in vivo. Hence, GEM/DOX liposomes were further investigated in a long-term survival study and compared against doxorubicin liposomes and gemcitabine liposomes. The GEM/DOX liposome-treated group had the longest median survival time, double that of the DOX liposome-treated group and 3.4-fold greater than that of the untreated controls. Our studies outline the development of a more efficacious formulation than clinically representative liposomal doxorubicin for breast cancer treatment and presents a novel strategy for designing cancer drug combinations.


Subject(s)
Doxorubicin , Liposomes , Animals , Cell Line, Tumor , Drug Carriers , Drug Combinations , Humans , Irinotecan , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...