Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Free Radic Res ; 49(12): 1431-7, 2015.
Article in English | MEDLINE | ID: mdl-26271311

ABSTRACT

The carbonate radical anion CO(3)(•-) is a potent reactive oxygen species (ROS) produced in vivo through enzymatic one-electron oxidation of bicarbonate or, mostly, via the reaction of CO(2) with peroxynitrite. Due to the vitally essential role of the carbon dioxide/bicarbonate buffer system in regulation of physiological pH, CO(3)(•-) is arguably one of the most important ROS in biological systems. So far, the studies of reactions of CO(3)(•-) with DNA have been focused on the pathways initiated by oxidation of guanines in DNA. In this study, low-molecular products of attack of CO(3)(•-) on the sugar-phosphate backbone in vitro were analyzed by reversed phase HPLC. The selectivity of damage in double-stranded DNA (dsDNA) was found to follow the same pattern C4' > C1' > C5' for both CO(3)(•-) and the hydroxyl radical, though the relative contribution of the C1' damage induced by CO(3)(•-) is substantially higher. In single-stranded DNA (ssDNA) oxidation at C1' by CO3(•-) prevails over all other sugar damages. An approximately 2000-fold preference for 8-oxoguanine (8oxoG) formation over sugar damage found in our study identifies CO(3)(•-) primarily as a one-electron oxidant with fairly low reactivity toward the sugar-phosphate backbone.


Subject(s)
Carbonates/toxicity , DNA Damage/physiology , DNA/chemistry , Free Radicals/toxicity , Oxidative Stress/physiology , Animals , Chromatography, High Pressure Liquid , Deoxyribose/chemistry , Hydrogen/chemistry , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Salmon
3.
Radiat Res ; 154(3): 319-25, 2000 Sep.
Article in English | MEDLINE | ID: mdl-10956439

ABSTRACT

o,o'-Diphenylenehalonium (DPH) cations represent a novel class of DNA-affinic compounds characterized by binding constants within the range of 10(5)-10(6) M(-1). The maximum binding capacity of 2-2.5 base pairs per DPH cation and about 30% hypochromic reduction in the optical absorption of DPH cations upon binding to DNA suggest intercalation as a likely binding mode. In a DNA-bound form, DPH cations induce strand breaks upon reduction by radiation-produced electrons in aqueous solutions. In keeping with this mechanism, the cleavage is strongly inhibited by oxygen and is not affected by OH radical scavengers in the bulk. The yields of DPH-mediated base release significantly exceed the yield of base release caused by hydroxyl radical (in the absence of scavenger) in anoxic solutions. The yields are weakly dependent on DNA loading within the range from 5 to 50 base pairs per intercalator, which indicates the ability of excess electrons in DNA to react with a scavenger separated by tens of base pairs from the electron attachment site. The question regarding the mechanism by which the distant reactants reach each other in DNA remains unanswered, although it most likely involves electron hopping rather than a single-step long-distance tunneling. The latter conclusion is based on our finding that the electron affinity of DPH cations does not affect their properties as electron scavengers in DNA as would be expected if the direct long-distance tunneling is involved.


Subject(s)
DNA Damage , DNA/drug effects , Intercalating Agents/toxicity , Onium Compounds/toxicity , Cations/toxicity , Chromatography, High Pressure Liquid , DNA/chemistry , Electrons , Free Radical Scavengers/pharmacology , Gas Chromatography-Mass Spectrometry , Hydroxyl Radical/metabolism , Solutions , Water
4.
Radiat Res ; 153(4): 436-41, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10761004

ABSTRACT

The radiation chemical yields of unaltered base release have been measured in three crystalline double-stranded DNA oligomers after X irradiation at 4 K. The yields of released bases are between 10 and 20% of the total free radical yields measured at 4 K. Using these numbers, we estimate that the yield of DNA strand breaks due to the direct effect is about 0.1 micromol J(-1). The damage responsible for base release is independent of the base type (C, G, A or T) and is not scavenged by anthracycline drugs intercalated in the DNA. For these reasons, reactions initiated by the hydroxyl radical have been ruled out as the source of base release. Since the intercalated anthracycline scavenges electrons and holes completely but does not inhibit base release, the possibility for damage transfer from the bases to the sugars can also be ruled out. The results are consistent with a model in which primary radical cations formed directly on the sugar-phosphate backbone react by two competing pathways: deprotonation, which localizes the damage on the sugar, and hole tunneling, which transfers the damage to the base stack. Quantitative estimates indicate that these two processes are approximately equally efficient.


Subject(s)
Base Pairing , DNA/radiation effects , Crystallization , DNA/chemistry , DNA Damage , Dose-Response Relationship, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...