Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 189: 464-476, 2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34450144

ABSTRACT

A magnetic biocomposite blend of chitosan-polyvinyl alcohol/fly ash (m-Cs-PVA/FA) was developed by adding fly ash (FA) microparticles into the polymeric matrix of magnetic chitosan-polyvinyl alcohol (m-Cs-PVA). The effectiveness of m-Cs-PVA/FA as an adsorbent to remove textile dye (reactive orange 16, RO16) from aquatic environment was evaluated. The optimum adsorption key parameters and their significant interactions were determined by Box-Behnken Design (BBD). The analysis of variance (ANOVA) indicates the significant interactions can be observed between m-Cs-PVA/FA dose with solution pH, and m-Cs-PVA/FA dose with working temperature. Considering these significant interactions, the highest removal of RO16 (%) was found 90.3% at m-Cs-PVA/FA dose (0.06 g), solution pH (4), working temperature (30 °C), and contact time (17.5 min). The results of adsorption kinetics revealed that the RO16 adsorption was better described by the pseudo-second-order model. The results of adsorption isotherm indicated a multilayer adsorption process as well described by Freundlich model with maximum adsorption capacity of 123.8 mg/g at 30 °C. An external magnetic field can be easily applied to recover the adsorbent (m-Cs-PVA/FA). The results supported that the synthesized m-Cs-PVA/FA presents itself as an effective and promising adsorbent for textile dye with preferable adsorption capacity and separation ability during and after the adsorption process.


Subject(s)
Azo Compounds/isolation & purification , Chitosan/chemistry , Coal Ash/chemistry , Coloring Agents/isolation & purification , Magnetic Phenomena , Polyvinyl Alcohol/chemistry , Adsorption , Analysis of Variance , Kinetics , Particle Size , Spectroscopy, Fourier Transform Infrared , Temperature , Time Factors , X-Ray Diffraction
2.
Bioresour Technol ; 101(12): 4622-9, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20153960

ABSTRACT

The main objective of this research was to investigate the main characteristics of the thermo-chemical conversion of oil palm stone (OPS) and palm kernel cake (PKC). A series of combustion and pyrolysis tests were carried out in two fixed-bed reactors. The effects of heating rate at the temperature of 700 degrees C on the yields and properties of the pyrolysis products were investigated. The results from the combustion experiments showed that the burning rates increased with an increase in the air flow rate. In addition, the FLIC code was used to simulate the combustion of the oil palm stone to investigate the effect of primary air flow on the combustion process. The FLIC modelling results were in good agreement with the experimental data in terms of predicting the temperature profiles along the bed height and the composition of the flue gases.


Subject(s)
Biotechnology/instrumentation , Industrial Waste/analysis , Plant Oils/chemistry , Refuse Disposal/instrumentation , Temperature , Waste Products/analysis , Hydrocarbons/analysis , Hydrogen/analysis , Models, Chemical , Nitrogen Oxides/analysis , Palm Oil
SELECTION OF CITATIONS
SEARCH DETAIL
...